
A Framework for Financial Modeling Page - 1

Copyright 2004 by Joseph W. Yoder 11

A Framework for A Framework for
Financial ModelingFinancial Modeling

“a model to build a model”
Joseph W. Yoder

University of Illinois at Urbana-Champaign

The Refactory, Inc.

yoder@refactory.com

http://www.refactory.com

Sponsored by Caterpillar Inc. through the National Center for
Supercomputer Applications

Copyright 2004 by Joseph W. Yoder 22

Goals

� Case study of developing a framework

� Case study of using design patterns

� Learn a framework for financial modeling

Copyright 2004 by Joseph W. Yoder 33

Overview

� Overview of Frameworks.

� What is a Financial Model?

� How we developed our framework.

� The Design of our framework.

� Patterns in our framework.

Copyright 2004 by Joseph W. Yoder 44

Frameworks
� Interface design and functional factoring

constitute the key intellectual content of software
and are far more difficult to create or re-create
than code…….Peter Deutsch

� Difference between framework and component
library for framework (components get plugged in
and are concrete sub-classes that do all the work).

� For detailed information about Frameworks see:
http://st-www.cs.uiuc.edu/users/johnson/

A Framework for Financial Modeling Page - 2

Copyright 2004 by Joseph W. Yoder 55

Frameworks
� Frameworks solve a particular set of

problems.
– get different points of view
– explain/defend current design

� Some frameworks are more technology
(horizontal) frameworks verses application
domain (vertical) frameworks.
– Are we solving GUI’s, object persistence verses

more application domain related such as
insurance or manufacturing.

Copyright 2004 by Joseph W. Yoder 66

Frameworks
� Framework is:

– reusable design of an application or subsystem
– represented by a set of abstract classes and the

way objects in those classes collaborate.

� Use framework to build application by:
– Creating new subclasses
– Configuring objects together
– Modifying working examples

Copyright 2004 by Joseph W. Yoder 77

Frameworks
�Framework prescribes how to

decompose a problem.
�Not just the classes, but the way

instances of the classes collaborate.
– shared invariants that objects must

maintain, and how they maintain them
– framework imposes a collaborative model

that you must adapt to.

Copyright 2004 by Joseph W. Yoder 88

Relevant Principles
� Frameworks are abstractions: people

generalize from concrete examples

� Designing reusable code requires iteration

� Frameworks encode domain knowledge

� Customer of framework is application
programmer

A Framework for Financial Modeling Page - 3

Copyright 2004 by Joseph W. Yoder 99

Generalize from Concrete Classes
� People think concretely, not abstractly.
� Abstractions are found bottom-up, by

examining concrete examples.
� Generalization proceeds by:

– finding things that are given different names
but are really the same,

– parameterizing to eliminate differences,
– breaking large things into small things so that

similar components can be found, and
– categorizing things that are similar.

Copyright 2004 by Joseph W. Yoder 1010

Finding Abstract Classes
� Abstract classes are discovered by

generalizing from concrete classes.
� To give two classes a common superclass:

– give them common interface
• rename operations so classes use same names
• reorder arguments, change types of arguments, etc.
• refactor (split or combine) operations

– if operations have same interface but different
implementation, make them abstract

– if operations have same implementation, move
to superclass

Copyright 2004 by Joseph W. Yoder 1111

Frameworks Require Iteration
Reusable code requires many iterations.

Basic law of software engineering:
“Johnson’s law”

If it hasn't been tested, it doesn't work.

Corollary: software that hasn't been
reused is not reusable.

Copyright 2004 by Joseph W. Yoder 1212

White-box vs. Black-box
Black-box

Customize by configuring

Emphasize polymorphism

Must know interfaces

Complex, harder to design

Easier to learn, requires
less programming

Harder to customize
because you need to learn
how objects collaborate

White-box

Customize by subclassing

Emphasize inheritance

Must know internals

Simpler, easier to design

Harder to learn, requires
more programming

Easier to customize
because you can
overwrite the code

A Framework for Financial Modeling Page - 4

Copyright 2004 by Joseph W. Yoder 1313

What is a Financial Model?

� Reports

� Answer “why”

� Correct errors, enter budget

� Depends on database

� Ensure security

Copyright 2004 by Joseph W. Yoder 1414

Answering Why
� answers questions about finances

– profit, return on assets

– detailed costs

– compare actual, budget, predicted

� high-level and detailed

� fixed reports and ad-hoc queries

Copyright 2004 by Joseph W. Yoder 1515

What is a Financial Model?

� Business logic is equations

– variable margin = net sales - variable cost

– net sales = gross sales - warrantee

– gross sales = sum salescolumn from
sales_and_transfertable

� User interface just as important

Copyright 2004 by Joseph W. Yoder 1616

Top Level
Dupont Model

WarningWarning!!
All numbersAll numbers
are fakeare fake..

A Framework for Financial Modeling Page - 5

Copyright 2004 by Joseph W. Yoder 1717

Inventories Drilldown
“Show calculation for Value”

Copyright 2004 by Joseph W. Yoder 1818

Summary Report
Vehicles by marketing company.

Copyright 2004 by Joseph W. Yoder 1919

Detailed Transactions
Inspect and edit the individual transactions.

Copyright 2004 by Joseph W. Yoder 2020

Graphs

A Framework for Financial Modeling Page - 6

Copyright 2004 by Joseph W. Yoder 2121

Summary of Reports

� Top level (Dupont or P&L)

� Drill down (ReportModel)

� Summary report

� Detailed transactions

� Graphs

Copyright 2004 by Joseph W. Yoder 2222

Patterns for
Developing Frameworks

1) Three Examples

2) White-box Framework

3) Component Library
– Build applications and add components to library

4) Hot Spots
– Separate Changeable from Stable Code

– Design Patterns

Copyright 2004 by Joseph W. Yoder 2323

Patterns for
Developing Frameworks

5) Pluggable Objects

6) Fine-grained Objects

7) Black-box Framework

8) Visual Builder

9) Language Tools

http://st-www.cs.uiuc.edu/users/droberts/evolve.html

Copyright 2004 by Joseph W. Yoder 2424

Three Examples

� Models for three business units

� Seemed completely different at first.

� Only one was fully implemented

A Framework for Financial Modeling Page - 7

Copyright 2004 by Joseph W. Yoder 2525

White-box Framework

Five kinds of ApplicationModels,
with lots of subclasses

� DupontModel

� ReportModel

� DetailedModel

� SummaryModel

� GraphModel

Copyright 2004 by Joseph W. Yoder 2626

User Interface Frameworks

� DuPontModel -

� ReportModel - Builds a spreadsheet
interface using values and GUI descriptions
from ReportValues.

� SummaryReports

� DetailedWindows - Edit and view
individual transactions

� GraphReports

Copyright 2004 by Joseph W. Yoder 2727

White-box Framework

� New window = new subclass

� Subclass has methods for
– reading database

– computing values

– stuffing them in GUI

� Initialization registers with dependents

Copyright 2004 by Joseph W. Yoder 2828

Component Library

� First, just abstract superclasses

� Second, query objects

� Third, GUI objects

A Framework for Financial Modeling Page - 8

Copyright 2004 by Joseph W. Yoder 2929

Hot Spots

� Find aspects that change, and make them
objects

� Often are patterns from Design Patterns:
Elements of Reusable Object-Oriented
Software (GOF)

� QueryObjects: Interpreter pattern

Copyright 2004 by Joseph W. Yoder 3030

Interpreter Pattern

�Need to represent SQL to manipulate query:
SELECT SUM(sales) FROM sales_and_transfer

WHERE family=‘MWL’ AND date >= ‘1/1/04’
AND date < ‘1/1/05’

�Problem: how do you represent a simple
language?

Copyright 2004 by Joseph W. Yoder 3131

Interpreter Pattern

1) make a class hierarchy that represents
nodes in abstract syntax tree
(SELECT, AND, <, tables, field names)

2) define methods to construct and
manipulate tree

3) define method to compute value of query
(this is the “interpreter”)

Copyright 2004 by Joseph W. Yoder 3232

Instance Hierarchy
SELECT SUM(sales) FROM sales_and_transfer

WHERE family=‘MWL’ AND date >= ‘1/1/04’ AND date < ‘1/1/05’

ProjectQueryProjectQuery SelectQuerySelectQuery TableQueryTableQuery
##sales_and_transfersales_and_transfer

(AND)(AND)FieldQEFieldQE
“sales”“sales”

MessageQEMessageQE
(SUM)(SUM)

MessageQEMessageQE
(AND)(AND)

(=)(=) FieldQEFieldQE
“family”“family”

(<)(<)(>=)(>=) ValueQEValueQE
‘MWL’‘MWL’

ValueQEValueQE
‘1/1/04’‘1/1/04’

FieldQEFieldQE
“date”“date”

ValueQEValueQE
‘1/1/05’‘1/1/05’

A Framework for Financial Modeling Page - 9

Copyright 2004 by Joseph W. Yoder 3333

QueryObjects

QueryObject

TableQuery

JoinQuery

WrapperQuery

RenamingQuery

ExpressionQuery

SelectQuery

ProjectQuery

OrderQuery

QueryExpression

ValueQE

MessageQE

FieldQE

RenamedFieldQE

Copyright 2004 by Joseph W. Yoder 3434

QueryObject Protocol

� values - answer collection of tuples

� fieldNames

� join: aQueryObject

� select: aQueryExpression

� project:, renameColumnsTo:, outerJoin:,
groupBy:, orderBy:, asDistinct

Copyright 2004 by Joseph W. Yoder 3535

Creating a QueryObject

salesQ := #sales_and_transfer asQuery.

dateQ := salesQ select:

((salesQ @@ ‘family’) = ‘MWL’) &

((salesQ @@ ‘date’) >= ‘1/1/04’) &

((salesQ @@ ‘date’) < ‘1/1/05’).

dateQ project: (dateQ @@ ‘sales’) Sum

Copyright 2004 by Joseph W. Yoder 3636

QueryExpression Protocol

+, -, <, =, &, |, Sum, Average, Count, …

Sending one of these messages to a
QueryExpression builds a MessageQE with
the appropriate operands, and with the
message as the operator.

A Framework for Financial Modeling Page - 10

Copyright 2004 by Joseph W. Yoder 3737

Leading to Black-box

� Component Library

� Hot Spots

� Pluggable Objects

� Fine-grained Objects

� Black-box Frameworks

Copyright 2004 by Joseph W. Yoder 3838

First Design

� Class hierarchy of ReportModels,
ReportModel creates QueryObjects.

� Improvement: separate logic and GUI

� Two hierarchies: ReportModel and
ReportValues.
– Result: twice the classes, some reuse

Copyright 2004 by Joseph W. Yoder 3939

First Separation

� ReportValues

� SalesValues

� InventoryValues

� ...

Makes QueryObjects

� ReportModel

� SalesModel

� InventoryModel

� ...

Uses QueryObjects

Copyright 2004 by Joseph W. Yoder 4040

Three-tiered Client-Server

Domain ObjectDomain Object

ViewView ControllerController

ModelModel

ViewView ControllerController

ModelModel

Business logicBusiness logic

ServerServer

GUIGUI

DatabaseDatabase

A Framework for Financial Modeling Page - 11

Copyright 2004 by Joseph W. Yoder 4141

Structure of Application

ApplicationApplication
ModelModel

ViewView

Aspect BAspect B

Action AAction A

Aspect CAspect C

View is a dependent of the aspect.View is a dependent of the aspect.
Aspect is a Aspect is a ValueModelValueModel..

Aspect AAspect A

Copyright 2004 by Joseph W. Yoder 4242

ValueModel

� Example of Observer pattern

� View (observer) registers with ValueModel
(subject) and is notified when it changes.

� ValueModel protocol
– value, value:

– addDependent:, removeDependent

� Observer protocol
– update:

Copyright 2004 by Joseph W. Yoder 4343

Using ValueModels
Window1Window1

ReportModel1ReportModel1

Window2Window2

ReportModel2ReportModel2

SelectionBoxSelectionBox

vmvmvmvm vmvm vmvm vmvm vmvm

budget value: (query1 values first first).
actual value: (query 2 values first first).
difference value: budget value - actual value

vmvm
diff.

dependent

budget actual

A query returns a
collection of tuples.

Copyright 2004 by Joseph W. Yoder 4444

Alternative Solutions

� ReportModel depends on SelectionBox.
– updates for too many changes

� ReportModel depends on ValueModels
from SelectionBox used in QueryObject
– hard to manage dependencies

� ReportModel depends on QueryObject,
QueryObject depends on ValueModels from
SelectionBox

A Framework for Financial Modeling Page - 12

Copyright 2004 by Joseph W. Yoder 4545

Observer and QueryObjects
Let ValueQE refer to a ValueModel.

Let each QueryObject observe its components.

ProjectQueryProjectQuery SelectQuerySelectQuery TableQueryTableQuery
##sales_and_transfersales_and_transfer

(AND)(AND)FieldQEFieldQE
“sales”“sales”

MessageQEMessageQE
(SUM)(SUM)

MessageQEMessageQE
(AND)(AND)

(=)(=) FieldQEFieldQE
“family”“family”

(<)(<)(>=)(>=) ValueQEValueQE
‘MWL’‘MWL’

ValueQEValueQE
‘1/1/04’‘1/1/04’

FieldQEFieldQE
“date”“date”

ValueQEValueQE
‘1/1/05’‘1/1/05’

Copyright 2004 by Joseph W. Yoder 4646

Old way - route change through report
budget value: (query1 values first first).
actual value: (query 2 values first first).
difference value: budget value - actual value

New way - route change directly to ValueModel
budget := QueryHolder on: query1
actual := QueryHolder on: query2
difference := budget - actual

Requires:
QueryHolder - adapts QueryObject to ValueModel
ValueModel understands +, -, *, /, etc

Initialization

Update

Copyright 2004 by Joseph W. Yoder 4747

QueryHolder

Adaptor pattern - subclass of ValueModel that
lets QueryObject act like ValueModel.

instance variables: query, values

query: aQuery

query := aQuery.

aQuery addDependent: self

Copyright 2004 by Joseph W. Yoder 4848

QueryHolder

update

values := aQuery values

self changed

value

^values first first

A Framework for Financial Modeling Page - 13

Copyright 2004 by Joseph W. Yoder 4949

Arithmetic on ValueModels

ValueModel implements arithmetic by
creating ValueModels that compute
function.

+ anObject

^BlockValue

on: [:a :b | a value + b value]

with: (Array with: self with: anObject)

Copyright 2004 by Joseph W. Yoder 5050

Result of Refactoring

GUI

Business Logic
(based on

ValueModels)

Reuse GUIs, change
ValueModels.

Hard part is creating
ValueModels and
connecting them to
GUI.

Copyright 2004 by Joseph W. Yoder 5151

Typical Values in a Report

budget actual variance VM

$ 5,000 /

1000Query
Value

Select all sales from North America
for the specified date and products

which returns $5,000,000

Sales Report

Thousands of Dollars

Copyright 2004 by Joseph W. Yoder 5252

Business logic is equations expressed with
ValueModel and QueryObjects

�Values = functions of other values

�Values = queries from the database

variable margin = net sales - variable cost

net sales = gross sales - warrantee

gross sales = sum salescolumn from
sales_and_transfertable

A Framework for Financial Modeling Page - 14

Copyright 2004 by Joseph W. Yoder 5353

Problems

� How do we go from one report to the next?

� How do we connect report to business
model?

� Must define business model flexibly

� Must define GUI flexibly

Copyright 2004 by Joseph W. Yoder 5454

Specifications

� A ReportSpec
– has name

– has parameters

– has menus, which name other reports

� DetailedReportSpec and
SummaryReportSpec are parameterized
with QueryObjects.

� GraphReportSpec is parameterized with
ValueModels

Copyright 2004 by Joseph W. Yoder 5555

ReportValues

Many tables.

Many columns

Each table has a
sequence of
valueModels

Total at end.

Copyright 2004 by Joseph W. Yoder 5656

Solution

� ReportValues responsible for
– knowing values

– knowing how to compute values

– knowing how to display more detail (drill-down)
on values

� Top level starts up ReportValues which starts
up next.

A Framework for Financial Modeling Page - 15

Copyright 2004 by Joseph W. Yoder 5757

Report Values

Application Report Values

NetSales
Report/Values Variable Costs

Report/Values

Report Model
and Values

Detailed
Gross Sales

Detailed
Warranty

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

0
10
20
30
40
50
60
70
80
90

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

East
West
North

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

0
10
20
30
40
50
60
70
80
90

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

East
West
North

Detailed
VCOS

Vehicle
Summary

Vehicle
Summary

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

0
10
20
30
40
50
60
70
80
90

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

East
West
North

Detailed
Values

Vehicle
Summary

Business Unit Specific Data

GUI Descriptions Business Logic

Copyright 2004 by Joseph W. Yoder 5858

Value Model
arithmetic

Report Values
Reports

Menu Specs

Element Specs

Window Specs

Queries

State

Query Expression Query Object

FM State
Windows

Values

App Info

Seletion

Report Model
Report Values

Editor Type

Table Interfaces

…

Dupont Model

Selection Criteria

Summary Report

Graph Report

Detailed Report

Modeling Layer

GUI Layer

Composition Layer

User View Architecture

Copyright 2004 by Joseph W. Yoder 5959

ReportValue protocol

� budget, actual - ValueModels

� openEditor - open “drill down”
– specify spreadsheets, ValueModels to go in the

spreadsheets, menus, reports on menus

� openWith: aSymbol - opens named report

Copyright 2004 by Joseph W. Yoder 6060

Layered Architecture

GUI
Values
(based on

Business Logic)

Application

A Framework for Financial Modeling Page - 16

Copyright 2004 by Joseph W. Yoder 6161

Black-box Framework

Value Model
arithmetic

Report Values
Reports

Menu Specs

Element Specs

Window Specs

Queries

State

Query Expression Query Object

FM State
Windows

Values

App Info

Seletion

Report Model

Dupont Model

Selection Criteria

Summary Report

Graph Report

Detailed Report

Modeling Layer

GUI Layer Composition Layer

Copyright 2004 by Joseph W. Yoder 6262

Visual Builder

� Make a GUI to define Specs.

� This GUI is a language for defining
financial models.

Copyright 2004 by Joseph W. Yoder 6363

Builders
� Equations in a ReportValue

– expressions

– queries

� GUIs
– ReportValue (Drill down)

– Graphs - specify business logic, labels

– Detailed - specify query, labels, editing

– Summaries - specify query, grouping, columns
to sum and calculate

� Selection
Copyright 2004 by Joseph W. Yoder 6464

Language Tools

� Languages need debuggers, profilers,
version control, etc.

� Built some core GUI’s for describing the
business rules with some checkers for
verifying the rules.

A Framework for Financial Modeling Page - 17

Copyright 2004 by Joseph W. Yoder 6565

Summary of Architecture

� Builders

� ReportValues, Selection Criterion, FMState

� GUI frameworks

� ValueModel, QueryObject

Copyright 2004 by Joseph W. Yoder 6666

Summary of Architecture

� business model is not object-oriented, just a
bunch of equations

� object model is the language for specifying
business model, not the business model

Copyright 2004 by Joseph W. Yoder 6767

Data Model

� Application Specific
– holds “real data”

– changes with every business model

� Generic
– specifies business logic and GUI

– never changes

Copyright 2004 by Joseph W. Yoder 6868

Other Features

� Any window can print itself

� Automated testing support

� Security for editing and/or viewing the data;
configured by administrators.

A Framework for Financial Modeling Page - 18

Copyright 2004 by Joseph W. Yoder 6969

Security Requirements

� Control passwords

� Control login

� Users have roles

� Role can only view a specified list of products.

� Role can only edit a subset of the specified list
of products.

� All security features can be controlled by
administrators

Copyright 2004 by Joseph W. Yoder 7070

FM Creational Diagram

SecurityModule

FMState
AppInfo

Selection
Values

Report Model

DuPontModel

ApplicationInfo

Selection Criteria

Summary Report

Formula Report

Graph Report

Detailed Report

1) loads

3) Opens: (FmState)

ReportValues

Creates: (FmState)

Creates: (username)

openEditorOn: (value)

Creates: (FmState)

Opens: (FmState)

2) Creates: (AppInfo)

START

Copyright 2004 by Joseph W. Yoder 7171

How to Develop a New
Financial Application

� Analyze business unit

� Build business-unit data model

� Specify GUI and business logic

� Install and Test

Copyright 2004 by Joseph W. Yoder 7272

Analyze Business Unit

� Questions to ask a new business unit
– Values to be calculated (netsales, vcos, pcos, ...)

– User interface

• top level

• Drill Downs (summary and detailed)

• Graphs of values

– Error-Correction/Analysis modules

A Framework for Financial Modeling Page - 19

Copyright 2004 by Joseph W. Yoder 7373

Some of the Patterns Used

� Builder

� Interpreter

� Model-View-Controller

� Reports

� Adapter

� Command

� Observer

� Decorator

� Visitor

� Singleton

� Factory Method

� Constraints

� Null Objects

� Composite

Copyright 2004 by Joseph W. Yoder 7474

Summary

� We have developed a reusable design for
financial applications

� Domain specific “Visual-Language”

� Framework emerges by repeatedly refactoring
system to eliminate complexity and create
flexibility

Copyright 2004 by Joseph W. Yoder 7575

Related Links

� The following link discusses the details of the framework
http://www.joeyoder.com/financial_framework

� Good Object-Oriented page with framework references
http://st-www.cs.uiuc.edu/users/johnson/

� The Evolutionary Patterns Paper - PLoP ’96
http://st-www.cs.uiuc.edu/users/droberts/evolve.html

� The Reporting Patterns describing Query-Qbjects - PLoP ’96
http:// www.joeyoder.com/papers/patterns/Reports/

Copyright 2004 by Joseph W. Yoder 7676

Related Links

� The security patterns used in this framework - PLoP ’97
http:// www.joeyoder.com/papers/patterns/Security/

� Dmitry Zelenko’s Masters Thesis describing Query Models
http:// www.joeyoder.com/papers/thesis/zelenko.ps/

� Reflective Facilities and Evolutionary approaches -PLoP ’95
http:// www.joeyoder.com/papers/patterns/Evolution/

� Jeff Barcalow’s Masters Thesis describing Scenario Planning
http:// www.joeyoder.com/papers/thesis/barcalow.html

� Adaptive Object-Model Architecture
http://www.adaptiveobjectmodel.com

