
1

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 1

Design Patterns
Java/C# Edition

Joseph W. Yoder

The Refactory, Inc.

www.refactory.com

yoder@refactory.com

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 2

The Refactory Principals
John Brant

Brian Foote

Ralph Johnson

Don Roberts

Joe Yoder

Refactory Affiliates
Dragos Manolescu

Brian Marick

Bill Opdyke

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 3

The Refactory principles and affiliates are experienced in
software development, especially in object-oriented
technology. We've been studying and developing software
since 1973. Our current focus has been object-oriented
technology, software architecture, and patterns. We have
developed frameworks using Smalltalk, C++, and Java, have
helped design several applications, and mentored many new
Smalltalk, Java and C++ developers. Highly experienced
with Frameworks, Software Evolution, Refactoring, Objects,
Flexible and Adaptable Systems (Adaptive Object-Models),
Testing, Workflow Systems, and Agile Software Development
including methods like eXtreme Programming (XP).

The Refactory, Inc.

2

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 4

Design Patterns

• A new category of knowledge

• Knowledge is not new, but talking about it is

• Make you a better designer

• Improves communication between designers

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 5

Why Patterns?

People do not design from first principles.

People design by reusing things they've seen before.

Same techniques appear over and over.

Software industry needs to document what we do.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 6

Patterns in solutions come from patterns in problems.

"A pattern is a solution to a problem in a context."

"Each pattern describes a problem which occurs over and
over again in our environment, and then describes the
core of the solution to that problem, in such a way that
you can use this solution a million times over, without
ever doing it the same way twice."

Christopher Alexander -- A Pattern Language

Patterns

3

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 7

Patterns

A pattern is a balance of forces

Forces: all the issues that affect a problem.

Typical software design forces: efficiency, clarity,
maintainability, safety.

Design is the art of making trade-offs.

Patterns should make trade-offs explicit.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 8

Patterns are not

!Patterns are not idioms

!Patterns are not algorithms

!Patterns are not components

!Patterns are not a “silver bullet”

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 9

Object-Oriented
Design Patterns

Repeating organization of classes (objects)
and the way they interact

Design Patterns: Elements of Reusable
Object-Oriented Software

Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides

Addison-Wesley, 1995.

4

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 10

Overall Goals

You will be able to:

•describe what patterns are, and why they are important

•recognize all the patterns in “Design Patterns”

•use patterns to solve specific design problems

•use patterns to document a design

•learn new patterns when you need them

You will not:

•learn everything there is to know about patterns

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 11

Class Overview

"Presentation

"Reading Groups

"Exercises

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 12

Patterns in Java and C#

Java and C# frameworks were influenced by the GoF
• black-box
• use patterns (they’re everywhere)

Java and C# has features that affect how design patterns are
applied

• interfaces
• serialization
• distribution
• concurrency
• GUI (AWT, Swing)
• inner classes
• protection

5

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 13

Outline of Course

What are patterns? – Composite, Chain of
Responsibility, Template Method

More Patterns – Decorator, Null Object, Strategy

How patterns work together

Abstract Factory, Adapter, Builder, Command,
Factory Method, Memento, Observer, Prototype,
Singleton, State

Documenting system designs with patterns

Centralized vs. distributed - Interpreter, Visitor,
Iterator

Bridge, Facade, Flyweight, Mediator, Proxy

Other Patterns and where to find more information

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 14

Notation
Design Patterns Book uses OMT

We use this to show the correlation

Sometimes we use UML which is similar

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 15

More Notation
Class Diagrams:

6

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 16

Yet More Notation

Object Diagrams:
Interaction Diagrams:

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 17

Template Method
Problem: Some classes have a similar algorithm, but it is a

little different for each class.

Solution: Define the skeleton of the algorithm as a method
in a superclass, deferring some steps to subclasses.

AbstractClass
templateMethod()
primOperation1()
primOperation2()

ConcreteClass
primOperation1()
primOperation2()

…

primOperation1();

…

primOperation2();

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 18

A template method calls abstract methods.

Usually a template method is created by generalizing
several existing methods.

Template Method separates the invariant part of an
algorithm from the parts that vary with each subclass.

Template Method

7

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 19

Template Method
(example)

public abstract class View {
public abstract doDisplay();
public void display() {

setFocus();
doDisplay();
resetFocos();

}
}
public class ButtonView extends View {

public void doDisplay() {
setButtonWidth();
…}

}

public class ListView extends View {
public void doDisplay() {

setScrollBarWidth();
…}

}

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 20

Composite

Context:

Developing OO software

Problem:

Complex part-whole hierarchy has lots of similar classes.

Example: document, chapter, section, paragraph.

Forces

• simplicity -- treat composition of parts like a part

• power -- create new kind of part by composing existing ones

• safety -- no special cases, treat everything the same

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 21

Document as a Tree

Chapter

Book

Subsection

ChapterChapter

Section

Paragraph

Figure

Section

Paragraph

Paragraph Paragraph

8

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 22

Composite

Idea: make abstract "component" class.

Alternative 1: every component has a (possibly
empty) set of components.

Component
Children

ParagraphChapter ...

Problem: many components have no components

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 23

Composite Pattern

Component

container
children

CompositeLeaf

Composite and Component have the exact same interface.

• interface for enumerating children

• Component implements children() by returning empty set

• interface for adding/removing children?

1

*

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 24

Two Design Alternatives

Component does not know what it is a part of.

Component can be in many composite.

Component can be accessed only through composite.

Component knows what it is a part of.

Component can be in only one composite.

Component can be accessed directly.

9

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 25

Component Knows its Composite

Rules when component knows its single composite.

A is a part of B if and only if B is the composite of A.

Duplicating information is dangerous!

Problem: how to ensure that pointers from components to
composite and composite to components are consistent.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 26

Ensuring Consistency

Solution:

Only public operations that change container are
addComponent/removeComponent

These operations update the container of the
component.

There is no other way to change the container.

Composite addComponent(Component c) {
components.add(c);
c.parent = this;

}

In C++, Composite must be friend of component.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 27

Example: Equipment

Equipment

weight
cost

CompositeEq.FloppyDisk ...

class CompositeEquipment {
int weight() {

int total = 0; Equipment item;
for (Enumeration e = children() ; e.hasMoreElements();

item = (Equipment) e.nextElement()
{

total += item.weight;
}
return total;

}
}

10

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 28

Example: Views and Figures

Big window can contain smaller windows.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 29

The Java Component Class

Component

x, y, width, height
font, ...

Window

Button ...

Public interface

paint()

validate()

addNotify()

List Container

Applet

Panel

an Applet

a TextField

a Window

a Button

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 30

Adding Container

Standard questions for adding:

Where is the collection stored?

Add at front or rear?

How do you update back pointer to parent?

What if component already is in a container?

Does a component need to know if its position changed?

public Component add(Component comp) {

addImpl(comp, null, -1);

return comp;

}

11

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 31

protected void addImpl(Component comp, Object constraints, int index) { ...

/* Add component to list; allocate new array if necessary. */

if (index == -1 || index == ncomponents) {

component[ncomponents++] = comp;

} else {

System.arraycopy(component, index, component,

index + 1, ncomponents - index);

component[index] = comp;

ncomponents++;

}

More of Container add()

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 32

More of Container add()

/* What do you do if component already has parent? */

if (comp.parent != null) {

comp.parent.remove(comp);

}

comp.parent = this;

/* How can component know it has a new position? */

if (peer != null) {

comp.addNotify();

}

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 33

Painting

If Container used only the Composite pattern, it would implement
Paint like:

public void paint(Graphics g) {
for (int i = 0; ++i <= ncomponents;) {

component[i] .paint(g);
}

}

But it also uses the Bridge pattern, which changes things.

12

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 34

Summary of Composite

Composite is a kind of Component

Permits arbitrary hierarchies

Add/remove Component from Composite

Operations on Composite iterate over Components

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 35

Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the request.
Chain the receiving objects and pass the request along the
chain until an object handles it.

Usually found with Composite - chain of parents.

Examples:
“inheriting” color from car
event handlers in GUI

Chain of
Responsibility

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 36

Chain of
Responsibility

Handler

handleRequest()

ConcreteHandler2

handleRequest()

ConcreteHandler1

handleRequest()

Client

13

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 37

Chain of
Responsibility

Usually mixed with other patterns

• Composite often has Chain of Responsibility up the tree.

• Sometimes request is encoded as a Command

• Sometimes request sent to Strategy

Example: GUI System (Windows, Button Widgets, …)

onMouseClick() {…

if hookmethod available handle request
else parent.onMouseClick();

…}

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 38

What is a Design
Pattern?

Design Pattern: repeating structure of design elements

Pattern is about design, but includes low-level coding details.

Pattern includes both problem and solution.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 39

What is a Design
Pattern?

Details of implementing pattern depend on language and
environment.

Pattern is often not the most obvious solution.

Pattern can be applied to many kinds of problems.

14

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 40

Parts of a Pattern
(Alexander)

Problem - when to use the pattern

Solution - what to do to solve problem

Context - when to consider the pattern

Forces - pattern is a balance of forces

Consequences, positive and negative

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 41

Parts of a Pattern

Examples:

Teach both problem and solution

Are the best teacher

Are proof of pattern-hood

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 42

Parts of a Pattern
(Gamma et. al.)

Intent - brief description of problem and solution

Also Known As

Motivation - prototypical example

Applicability - problem, forces, context

Structure/Participants/Collaborations - solution

Consequences - forces

Implementation/Sample Code - solution

Known Uses

Related Patterns

15

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 43

GoF Design Patterns
Creational patterns

Abstract factory

Builder

Factory method

Prototype

Singleton

Structural patterns

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Behavioral Patterns

Chain of Responsibility

Command

Interpreter

Iterator

Mediator

Memento

Observer

State

Strategy

Template Method

Visitor

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 44

Decorators

Decorators add a responsibility to an object by
• making the object a component
• forwarding messages to component and handling others

Possible examples from Java
Double, Integer, Float, etc.

Decorators add an attribute to an object.

Decorator forwards operations to the component.

Component gets values from its decorator.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 45

Decorator Structure

Element

DecoratorPrimitive

specialized
operations

Decorator forwards most operations to the
object it is decorating.

1

1

16

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 46

Decorator Example

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 47

Design Patterns in AWT

1.0 Event-handling by Chain of Responsibility

problem, either Mediator or lots of subclasses

1.1 Event-handling by Observer and Adapter

Java uses lot’s of Patterns but just because you use
a Pattern doesn’t necessarily mean a good design!

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 48

Strategy Pattern

Define a family of algorithms, encapsulate each one, and
make them interchangeable.

Strategy pattern means:

• easy to replace one algorithm with another

• can change dynamically

• can make a class hierarchy of algorithms

• can factor algorithms into smaller reusable pieces

• can encapsulate private data of algorithm

• can define an algorithm in one place

17

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 49

Strategy Pattern

For procedural languages you would have conditional
code spread throughout your application for dealing
with special cases.

onDisplayButton()
case OS of:
‘NT’ : setButtonWidth: 100;
‘UNIX’: setButtonWidth: 125;
...

onMousePressed()
case OS of:
‘NT’ : setButtonShadowWidth: 10;
‘UNIX’: setButtonShadowWidth: 15;

...

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 50

AbstractStrategy

doIt

ConcreteStrategy

doItInContext

Context

doItInContext

Strategy

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 51

Strategy
(an example)

+doSomethingUseful()
#myPrivateDraw()

-attr1
-attr2

Client

#setButtonWidth(in width : int)
#setButtonShadowWidth(in width : Integer)
#buttonWidth() : int
#shadowWidth() : int

ButtonDisplay

#buttonWidth() : int
#shadowWidth() : int

NTButtonDisplay UNIXButtonDisplay

*

*

18

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 52

Moving Code
“Refactoring”

To move a function to a different class, add an argument
to refer to the original class of which it was a member
and change all references to member variables to use
the new argument.

If you are moving it to the class of one of the arguments,
you can make the argument be the receiver.

Moving function f from class X to class B

class X {
int f(A anA, B aB){

return (anA.size + size) / aB.size;
} ...

class B {
int f(A anA, X anX){

return (anA.size + anX.size) / size;
} ...

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 53

Moving Code

You can also pass in a
parameter object which
gives the algorithm all of
the values that it will need.

Inner Classes can help by
providing access to values
that the algorithm may
need.

Car f(a, b, c)
{if this.x > a then

this.x = a+b
else if this.x < a then

this.y = a+b
else

this.x = a+b }

Car FStrategy

f(CarPars Car)
{if this.x > a then

this.x = a+b
else if this.x < a then

this.y = a+b
else

this.x = a+b }

CarPars
a, b, c
x, y

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 54

NullObject

������������������������� Bobby Woolf, PLoPD 3

���	��
���	��
���	��
���	��

• provide surrogate for another object that shares same interface

• usually does nothing but can provide default behavior

• encapsulate implementation decisions of how to do nothing

��������	
��������	
��������	
��������	

19

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 55

Design Patterns

Teaching

• help novices learn to act like experts

Design

• vocabulary for design alternatives

• help see and evaluate tradeoffs

Documentation

• vocabulary for describing a design

• describes "why" more than other techniques

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 56

Review

Patterns: solutions to recurring problems

OO design patterns: Recurring structures of objects that
solve design problems

Stretch from design to code

We have seen: Composite, Chain of Responsibility,
Decorator, Null Object, Strategy, Template Method

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 57

Goals of Next Session

Be able to recognize the creational patterns: Abstract
Factory, Builder, Factory Method, Prototype, Singleton

Be able to describe relationships among creational
patterns

Be able to recognize Adapter, Command, Memento,
Observer, & State

Learn more about how patterns work together

20

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 58

How Patterns Work Together

Some patterns are commonly used together

Some patterns are alternatives

Some patterns have common context

Creational patterns:

Some objects have to create other objects.

How can we parameterize them with the kind of
objects that they create?

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 59

Creational Patterns

Factory Method

Factory Object

Abstract Factory

Builder

Prototype

Singleton

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 60

Foo
xFunction()
yFunction()

AFooFactory
+Xfactory()
+getClass(value):Foo

FooB
yTemplate

FooA
xTemplate
yTemplate

Factory Method

21

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 61

Factory Method

Don't (call constructor / send message to class) directly.

Make a separate function / method to create object.

Advantages:

can change class of product in subclass

can produce easier to read functions

Disadvantages:

slower, bulkier

harder to read ALL the code

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 62

Problem with factory method -- have to create subclass
to parameterize.

Often end up with parallel class hierarchies.

Example: subclass of Tool for each figure you want to
create or a large case statement or many methods.

Alternative: parameterize CreationTool with object that
creates figure

(Note: Factory Object is generalization of Abstract
Factory, Builder, and Prototype. It is not in the book.)

Factory Object

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 63

Example

FigureFactory
new

LineFigureFactory

ElipseFigureFactory

RectangleFigureFactory

Figure

LineFigure ElipseFigure RectangleFigure

22

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 64

Applicability

Use factory objects:

• when system creates them automatically

• when more than one class needs to have product
specified

• when most subclasses only specialize to override
factory method

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 65

Making a class hierarchy of factories seems wasteful.

The parameters of an object can be as important as its class.

Solution:

Use any object as a factory by copying it to make a new
instance.

Advantages

Don't need new factory hierarchy.

Can make new "class" by parameterizing an object

Disadvantages

Requires robust copying

Prototype

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 66

Problem: a "chapter" or a "section" is a set of
objects, not a single object. Users want to
"create a new chapter". How should system
create set of objects?

Solution: Specify the kind of objects to create by a
prototypical instance, and create new objects by
copying the prototype. If object is a composite
or decorator then its entire substructure is
copied.

Advantage: users can create new objects by
composing old ones, and then treat the new
object as a "prototype" for a whole new "class".

Prototype

23

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 67

Prototype

DocumentComponent

Composite
DocumentDecoratortitle, level

NumberDecorator
number

TitleDecorator
title

Clone

Paragraph

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 68

Abstract Factory

Sometimes a group of products are related -- if you change
one, you might need to change them all.

Solution:

Make a single object that can make any of the products.

ScrollBar

MotifScrollBar PMScrollBar

WidgitFactory
CreateScrollBar
CreateWindow

MotifWidgetFactory
CreateScrollBar
CreateWindow

PMWidgetFactory
CreateScrollBar
CreateWindow

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 69

Builder

Complex objects require a lot of work to make.

Solution:

Factory must keep track of partly built product.

Client specifies product by performing series of
operations on factory.

Client

WindowBuilder
AddScrollBar
AddButton
GetWindow

24

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 70

Implementing Builder

WidgitFactory
CreateScrollBar
CreateWindow

WindowBuilder
AddScrollBar
AddButton
GetWindow

PMWidgetFactory
CreateScrollBar
CreateWindow

MotifWidgetFactory
CreateScrollBar
CreateWindow

Builder can make components using

• Factory Method

• Singleton (to come)

• Abstract Factory, or

• Prototype

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 71

Summary of Factory Patterns

Factory method -- use in simple cases so that you can
change product

Abstract factory -- use when there is a set of related
products

Builder -- use when product is complex

Prototype -- use when Factory Method is awkward and
when classes are not objects, or when you want to
specify new "classes" by composition

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 72

Singleton

What if you want to make sure that a class has only one
instance?

One possibility is global variables. Another is using
static member functions.

Best solution: store single instance in static member
variable.

25

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 73

Singleton in Java

abstract public class Singleton

{

protected Singleton() {}

abstract protected Singleton makeInstance();

private static Singleton soleInstance = null;

public static Singleton Instance() {

if (soleInstance == null)

soleInstance = makeInstance();

return soleInstance;

};

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 74

Summary

Certain combinations of patterns are common.

•Abstract Factory and Factory Method

• Builder and Singleton

Often one pattern is used to implement an object
in another.

A single object will play different roles in
different patterns.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 75

Goals of Next Session

Learn State and Observer (Listeners)

Learn Memento

See more about how Patterns work together

26

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 76

State Pattern

Problem: an object whose behavior changes as its state changes

Solution: make the state be a separate object, and delegate to it.

This results in a new class hierarchy of states.

Design of state is closely coupled to design of object.

Operations on states will change the state of the object.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 77

State Pattern

State
xHandle()
yHandle()

Context
+request()

ConcreteStateB
yTemplate

ConcreteStateA
xTemplate
yTemplate

…

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 78

Toolbar State Example

27

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 79

State

Behavior of drawing editor changes when you select a
different tool.

Tools are the "current state" of the DrawingController; it
delegates operations to the current state.

Make a class hierarchy of Tools.

DrawingController points to its "current Tool".

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 80

State
Figure

Display

DrawingController Tool

Drawing

current tool

SelectionTool CreationTool

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 81

Observer Pattern

Intent: Define a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically.

Example: Graphics system - moving box causes
connecting lines to move.

28

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 82

Observer Pattern

Intent: Define a one-to-many dependency between objects
so that when one object changes state, all its dependents
are notified and updated automatically.

Observer

update
Subject

addDependent
removeDependent
notify

Observer - interface

LineFigure

update

observer/dependent

endPointRectangleFigure

Observable - class

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 83

Observer Pattern
Observer

update

DrawingController Tool

Drawing

current tool

defaultTools

Figure

display
update

Subject

addDependent,
etc.

observer/dependent

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 84

Event Handling

AWT 1.0 uses Chain of Responsibility

AWT 1.1 uses Observer

Shows the trade-offs between patterns

Shows Patterns != Good

29

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 85

Using Observer

Decide whether object is Subject, Observer, or both

Subjects must call notify() when they change state

Observers must define update()

Observers must register with Subjects

What are the arguments of notify() and update()?

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 86

Observer in Java

Original implementation of the Observer pattern:

Observer/Observable.

Observer is an interface.

Observable is a class that implements the ability to keep
track of a set of Observers.

More modern implementation is the Listeners.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 87

Listening instead of
Observing

EventSource is a subject

EventListener is an observer

Many kinds of EventListeners,
each with their own interface

30

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 88

Different Kinds of
Listeners

ActionListener

actionPerformed(ActionEvent)

ComponentListener

componentResized(ComponentEvent)

componentMoved(ComponentEvent)

componentShown(ComponentEvent)

componentHidden(ComponentEvent)

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 89

Events in AWT 1.1

Applet is a “Listener”

Button has methods

addActionListener()

processActionEvent()

Applet registers with Button.

When Button processes action event,
it calls applet

an Applet

a TextField

a Window

a Button

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 90

Memento

Undo is not enough in the presence of a constraint system.
Must go back to same state, not just reverse operation.

31

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 91

Memento

Without violating encapsulation, capture and
externalize an object’s internal state so that the object
can be restored to this state later.

Memento

GetState
SetState

state
Originator

set(Memento)
createMemento

state

Originator

return new Memento(state)

state = m.getState()

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 92

Adapter

Convert the interface of a class into another
interface clients expect. Adapter lets
classes work together that couldn't
otherwise because of incompatible
interfaces.

AdapteeAdapterTarget

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 93

Command

Intent
Encapsulate a request as an object, thereby

letting you parameterize clients with
different requests, queue or log requests,
and support undoable operations.

Menus often do this.

32

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 94

Summary

New patterns: Abstract Factory, Builder,
Factory Method, Prototype, Singleton,
Adapter, Command, Memento, Observer, State

See How Patterns work together

Use Patterns to Document a Design

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 95

Goals of next session

Learn Interpreter, Iterator, Visitor

Be able to distribute an algorithm over a class
hierarchy, or centralize it

Be able to explain some of the different kinds of
trade-offs that patterns can make

Learn more about how patterns work together

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 96

Replacing Cases with Subclasses

Advantages

• instead of modifying case statements, add
a new subclass

• can use inheritance to make new options

Disadvantages

• program is spread out,

+ harder to understand

+ harder to replace algorithm

• state of object can change, but class can not

33

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 97

The Interpreter Pattern

To write a little object-oriented interpreter for a
language L:

1) make a subclass of LExpression for each rule in
the grammar of L

2) for each subclass, define an Interpret method
that takes the current context as an argument.

3) define interface for making a tree of
LExpression.

4) define a program for L by building a tree.

5) run a program by calling Interpret() on the root
of the tree

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 98

Interpreter

Client

NonterminalExpression
interpret(Context)

TerminalExpression
interpret(Context)

Context

AbstractExpression
interpret(Context)

1

*

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 99

Spreadsheet Rules

Spreadsheet rules of the form D3 + D4 or Subtotal(D2:D8)

Grammar is

expression ::= expression1 ‘+’ expression |

expression1 ‘-’ expression |

expression1 ::= expression ‘*’ expression |

expression ‘/’ expression |

number | cellID |

‘Subtotal(‘ range ‘)’

range ::= cellID ‘:’ cellID

34

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 100

Spreadsheet Objects

new PlusExpression(new CellExpression(3,2),

new CellExpression(3,3))

Equivalent to “C2 + C3”

PlusExpression

CellExpression
row = 3
column = 2

CellExpression
row = 3
column = 3

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 101

Appling the Interpreter Pattern

Step 1: Make a subclass of Expression for each rule in
grammar

Expression

BinaryExpression

PlusExpression, MinusExpression,
TimesExpression, DivideExpression

ConstantExpression

CellExpression

SubtotalExpression

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 102

Applying the Interpreter Pattern

Step 2. Define a value(Spreadsheet) method for each
subclass of Expression

abstract class Expression {
public Number value(Spreadsheet s);

class PlusExpression extends Expression {
public Number value(Spreadsheet s) {

return operand1.value(s) + operand2.value(s);
class CellExpression extends Expression

public Number value(Spreadsheet s) {
return s.cellvalue(row, column);

35

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 103

Applying the Interpreter Pattern

Step 3: Define constructors for making expression tree
Expression(Expression e1, Expression e2) {

operand1 = e1;
operand2 = e2;

}

Step 4,5: Build tree and evaluate it.
ss.setExpression(3,4,new PlusExpression(new

CellExpression(3,2), new CellExpression(3,3)));
ss.cellValue(3,4)

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 104

Interpreter Pattern Examples

Other examples of Interpreter pattern:

• producing Postscript for a document

• regular expression checker

• figuring out the value of an insurance policy

• compiling a program

In C, the interpreter would be a switch statement.

Easy to add new kinds of expressions to the spreadsheet
-- don't have to modify any existing code.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 105

When to Centralize Algorithm

Use centralized algorithm when you need to

• change entire algorithm at once

• look at entire algorithm at once

• work with only a few kinds of components

• change algorithm, but not add new classes of
components

36

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 106

Visitor pattern

Visitor lets you centralize algorithm, lets you create a
family of algorithms by inheritance, and lets you
define a new operation without changing the classes
of the elements on which it operates.

Major problem is that adding a new kind of parse node
requires adding a new function to each visitor.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 107

Interpreter To Visitor

• two kinds of classes: parse tree nodes and node visitor

• parse tree nodes have Accept function

class PlusExpression extends BinaryExpression

public Object accept(ExpressionVisitor v)

{

return v.visitWithPlusExpression(this);

}

• each parse tree node calls a different Visit function

• visitor defines a Visit function for each class of node

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 108

Interpreter without Visitor

Cell1 Spreadsheet

value

value
valueOf

value

valueOf

Plus Cell2

=Cell1+Cell2

37

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 109

Double Dispatch and Visitor

Double Dispatch – Effectively, the Visitor pattern lets you
add operations to classes without changing them.
Visitor achieves this by using a well known technique
called double-dispatch. Double dispatch operation gets
executed is dependent upon the kind of request and the
type of the receiver. (Search google for Double
Dispatch and Java).

1 + 4.5 = 5.5

• Double dispatch can be used to coerce the right type

Integer

+ (Number aNumber)

return aNumber.addFromInteger(this)

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 110

Interpreter with Visitor

accept

accept
valueOf

valueOf

SpreadsheetCell1 Cell2

visitPlus

visitCell

visitCell

Visitor

accept

Plus

=Cell1+Cell2

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 111

Related Patterns

• Several patterns are often used with Interpreter

– Visitor - to separate algorithm from tree classes

– Iterator - to make traversal more abstract

– Composite - to make tree

– Template Method - to put reusable code in abstract
class

38

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 112

Iterator

Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying
implementation.

ConcreteIterator

Iterator

first()
next()
isDone()
currentItem()

ConcreteAggregate

createIterator()

Aggregate

createIterator()

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 113

Using Enumeration-style
Iterators

public void printEmployees (Employees emp)

{

for (e = emp.employees(); e.hasMoreElements();)

{

Employee currentEmployee

= (Employee) e.nextElement();

currentEmployee.print();

}

}

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 114

Using Iterator-style
Iterators

public void printEmployees (Employees emp)

{

for (i = emp.employees(); i.hasNext();)

{

Employee currentEmployee

= (Employee) i.next ();

currentEmployee.print();

}

}

39

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 115

The Enumeration
Interface

public boolean hasMoreElements();

public Object nextElement();

The old style Java external iterator convention

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 116

The Iterator
Interface

public boolean hasNext();

public Object next ();

public void remove();

The new style Java external iterator convention

Iterators in Java include Collections, Streams, …

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 117

Variations on Iterator

1) Internal iterator - iterate inside the Aggregate

– easy to use, not as powerful as external iterator

– works best with closures (Inner Classes)

2) Combine next() and currentItem()

Smalltalk has Internal and External Iterators

Collections with do: and Streams

Java has also implemented these ideas

40

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 118

An Adapter on an
Enumerator

class EnumerationAdapter implements Iterator

{

private Enumeration e;

public EnumerationAdapter(Enumeration e)
{ this.e = e;}

public boolean hasNext() { return e.hasNextElement(); }

public Object next() { return e.nextElement(); }

public void remove() {}

}

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 119

Iterator and Composite

Composites usually have an iterator for their components.

Can make Iterator on Component that will iterate over all
the components in a tree.

Internal Iterator is easy: here is method on Component:

public void preorder(Command c) {

c.evaluate(this);

Enumeration e = children();

for (; e.hasMoreElements();) {

((Component) e.nextElement()).preorder(c);

}

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 120

External Tree Iterator

Do a pre-order traversal.

Tree Iterator will have a stack of iterators, one for each ancestor of
current node. The currentItem of each Iterator is the ancestor of
the current node.

isDone is false for all iterators on the stack.

Tree Iterator is done when stack is empty.

Iterator

Iterator

The Stack

Iterator

41

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 121

External Tree Iterator

class TreeIterator {

public next() {

if (stack.isEmpty()) return;

stack.push(stack.top().currentItem().children());

while (stack.top().isDone()) {

stack.pop();

stack.top().Next();}}

ElementType currentItem() {

return stack.top().currentItem();}

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 122

Iterator and Visitor

Who is responsible for the traversal algorithm when you
use Visitor and Composite?

The components? (most common in C++)

The visitor?

A separate iterator?

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 123

1: The Components
If the component handles traversal, it looks like:

public Object accept(Visitor visitor) {

visitor.visitA(this);

for (Enumeration e = children();

e.hasMoreElements) {

item = (Item) e.nextElement();

item.accept(visitor);

Otherwise, it looks like

public Object accept(Visitor visitor) {visitor.visitA(this);}

42

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 124

2: The Visitor

If the visitor handles iteration, it looks like:

public Object visitA(ComponentA c) {

// do something with c

for (Iterator i = c.children();

!i.isDone(); I.next())

{

((Component) i.currentItem()).accept(visitor);

}

}

Otherwise Visitor visitA just interacts with componentA.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 125

3: An Iterator
If client calls Iterator, it looks like:

visitor = new ConcreteVisitor.

for (Iterator i = component.iterator();

!i.isDone(); i.Next())

{

((Component) i.currentItem()).accept(visitor);

}

}

Otherwise, the client looks like:

ConcreteVisitor visitor;

treeRoot.accept(visitor);

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 126

Tradeoffs

1: The Components

2: The Visitor

3: An Iterator

Highlight the tradeoffs and possibly look at a number
4 which is letting the client do it.

43

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 127

Review

New patterns: Interpreter, Iterator, Visitor

Patterns interact:

object can play different roles in different patterns

patterns can be alternatives

one pattern can set up another pattern

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 128

Next Session

Learn remaining patterns

• Proxy

• Bridge

• Facade

• Flyweight

• Mediator

Remember intent of
pattern so you can look
it up when you need it.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 129

Proxy

• Provide a surrogate or placeholder for another
object to control access to it

represent an object in a remote address space

create expensive objects on demand

check access rights

• Proxy has same interface as “real subject”, and
forwards operations to it

44

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 130

Proxy

Subject

request

Client

Proxy

request

realSubject

...

RealSubject

request

realSubject->Request()

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 131

Proxy

Remote proxy - first package arguments, then make remote
procedure call.

Virtual proxy - compute objects, then forward request.

Protection proxy - check access rights, then forward
request.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 132

Dynamic Proxy Classes

Started in Java 2 1.3

• A dynamic proxy class is a class that implements a list of
interfaces specified at runtime when the class is created

• A proxy interface is such an interface that is
implemented by a proxy class

• A proxy instance is an instance of a proxy class

45

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 133

How to Hide Information

Hiding the classes in one module from another makes
changes easier. Some things that help are:

• Abstract classes

• Builder (or Abstract Factory)

Hide classes of products that will be used by other
module in the builder.

Example: window builder, code generator

• Adapter

Hide class being used inside adapter

• Bridge and Facade

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 134

Bridge

What do you do if both an abstraction and its
implementation vary?

Window

XWindow WWindow

XIconWindow WIconWindow

IconWindow

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 135

Bridge

Transient
Window

WWindowImpIconWindow

Window WindowImp

XWindowImp

Decouple an abstraction from its implementation so
that the two can vary independently.

46

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 136

Bridge and Builder

Use Builder to hide Window classes from application.

Use Bridge to hide platform classes from Builder.

Application

WindowImp

Builder Window

Bridge

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 137

Bridge in the AWT

Container HiddenPeer2Button

Component ComponentPeer

HiddenPeer1

ImplementationAbstraction

The look of a component depends on the windowing system.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 138

Standard Questions
for Bridge

Where is the bridge set up?

When do we cross the bridge
(from abstraction to implementation)?

47

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 139

Building the Bridge

Create peers when components added to tree.

A ContainerPeer

a TextFieldPeer

a WindowPeer

a ButtonPeer

an Applet

a TextField

a Window

a Button

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 140

How a Button
Creates a Peer

/**

* Creates the peer of the button. This peer allows us to

* change the look of the button without changing its functionality.

*/

public void addNotify() {

peer = getToolkit().createButton(this);

super.addNotify();

}

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 141

How a List
Creates a Peer

/**

* Creates the peer for the list. The peer allows us to modify the

* list's appearance without changing its functionality.

*/

public void addNotify() {

peer = getToolkit().createList(this);

super.addNotify();

synchronized (this) {

visibleIndex = -1;

}

}

48

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 142

Flyweight

Use sharing to support large numbers of objects
efficiently.

Separate intrinsic state (state stored in flyweight) from
extrinsic state (state passed in as part of context).
Minimize extrinsic state. Share flyweights that have the
same intrinsic state.

Usually requires a factory that detects whether a
flyweight exists with a particular instrinsic state and
returns it.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 143

Flyweights for Text

column

row row row

T h i s i s a s e n t e n c e

T h i s a s e n t c Flyweight pool

Client of flyweight,
which holds context.

Context is location.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 144

Flyweight

FlyweightFactory

getFlyWeight(key)

Flyweight
intrinsic
operation(extrinsic)

flyweight
pool

Flyweight class is usually abstract, with concrete
subclasses that define the intrinsic state.

49

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 145

Flyweight for CAD

A VLSI design system must model millions of
transistors.

This is only possible by sharing structure. Most
transistors are part of larger structures (registers, NAND
gates, RAM) that designers prefer to think about. Each
kind of structure is called a cell.

Each cell is interconnected with other cells.

Context is location and interconnections.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 146

Flyweight for CAD

Transistor
size
display(loc,connects)

Cell

display(loc,connects)

flyweight
pool

CompositeCell
ports, locations
display(loc,connects)

CellFactory

getCell(key)
register(key,Cell)

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 147

Facade

Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface that
makes the subsystem easier to use.

DrawingView

Figure

Handle

SelectionDrawing

Drawing

components

drawing

50

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 148

Mediator

Define an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping
objects from referring to each other explicitly, and it lets
you vary their interaction independently.

Example: Insurance policies must be approved before they
are issued. There is a procedure (which can change over
time, and which is different for different kinds of policies)
for approving a policy. This procedure must interact with
work queues of managers and with the history that is kept
on the customer. Instead of putting this procedure in the
insurance policy, put it in a separate object that is easy to
change. (This is a “business process”)

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 149

Procedure

CustomerHistory

InsurancePolicy

Worker

Mediator

Colleagues

If interaction is main thing that changes, then
make the interaction be an object.

Colleague classes become more reusable.

Mediator is the non-reusable part.

Mediator

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 150

Procedure

CustomerHistory InsurancePolicy Worker

Business Rule

Domain Objects

Mediator

Colleagues

Mediator

51

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 151

Not Mediator

CustomerHistory

InsurancePolicy

Worker

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 152

Are not reusable, but make other objects reusable

Used to glue together objects from a kit

Tend to be procedural, not object-oriented

Mediators

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 153

Patterns Protect from Change

Rule: if something is going to change, make it an object.

Strategy: make algorithm an object so it can change

State: make state-dependent behavior an object so it
can change

Iterator: make the way you iterate over an aggregate
an object so it can change

Facade: make a subsystem an object so it can change

Mediator: make the way objects interact an object so it
can change

Factory: make the classes of your products an object
so it can change

52

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 154

Summary
You have now seen all of the Design Patterns

You should be able to recognize Abstract Factory,
Adapter, Bridge, Builder, Chain of Responsibility,
Command, Composite, Decorator, Façade, Factory
Method, Flyweight, Interpreter, Iterator, Mediator,
Memento, Null Object, Observer, Prototype, Proxy,
Singleton, State, Strategy, Template Method, Visitor…

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 155

Bird on Patterns

Learn the patterns
and then forget
‘em

-- Charlie Parker

http://www.hillside.net

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 156

Silver Buckshot

There are no silver bullets
…...Fred Brooks

But maybe some silver buckshot…

• Objects

• Frameworks

• Patterns

• Architecture

• Process/Organization

• Tools

53

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 157

UIUC Patterns Group
Software Architecture Group

Ralph Johnson’s Group
• Objects

• Reuse

• Frameworks

• Adaptive Architecture

• Components

• Refactoring

• Evolution

• Patterns

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 158

Our Perspective

Objects, Patterns, Frameworks, and Refactoring really
do work, and can lead to the production of better,
more durable, more reusable code

To achieve this requires a commitment to tools,
architecture, and software evolution, and to people
with superior technical skills and domain insight

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 159

Next Session

You will be able to

– find new patterns

– learn new patterns

We’ll also talk about writing patterns.

54

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 160

Other Patterns

Claim: people always use patterns to solve problems

Corollary: there are a lot of software patterns besides
object-oriented design patterns!

patterns for user interface design

patterns for distributed programming

patterns for checking user input

patterns for analysis

patterns for how to manage a software project

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 161

User Interface Patterns

Ward Cunningham and Kent Beck

http://c2.com/cgi-bin/wiki?HistoryOfPatterns

• Window per Task

• Few Panes

• Standard Panes

• Nouns and Verbs

• Short Menus

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 162

Pattern Language

Set of patterns that tell you how to build something.

Complete -- all the patterns you need.

One pattern leads to another -- language gives order to
consider them.

55

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 163

Pattern Name Description

Persistent Layer Provide a layer for mapping your objects to the RDBMS or other data source.

CRUD All persistent object need, at a minimum, create, read, update, and delete
operations.

SQL Code Defines the actual SQL Code that takes the values from the RDBMS or other
data source and retrieves them for the object’s use and vice-versa. It is where
you define the CRUD operations.

Attribute Mapping
Methods

Maps the values between the database values and attributes. This pattern also
handles complex object mappings. Populates the object(s) with the row values.

Type Conversion Works with Map Attributes to translates values from the database to the
appropriate object types and vice-versa. Insures data integrity.

Mapping Objects To Persistence
Pattern Language

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 164

Mapping Objects To Persistence
Pattern Language

Pattern Name Description

Change Manager Keeps track of when an object’s values have been changed for maintaining
consistency with the database. It determines the need to write the values to a
database table or not.

OID Manager Generates Unique Keys for the Object Ids during an insert.

Transaction
Manager

Provides a mechanism to handle transactions while saving objects.

Connection
Manager

Gets and maintains a connection to the database.

Table Manager Manages the mappings from an object to its database table(s).

��������	�
������������������ ����������������� ����������	
�������	������	��	����������	�������������������	
�������	������	��	����������	�������������������	
�������	������	��	����������	�������������������	
�������	������	��	����������	��������� ��������������������

������������������������������������ � !"�#����������$��������%������& !	�'����������������()���* !*+,�-���	�������������

.������������������/��0�����1�-����������������������.�������.�����2���& !	�

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 165

Pattern Name Description

Single Access
Point

Providing a common security module and
a single way to log into the system.

Check Point Organizing security checks and their repercussions.

Roles Organizing users with similar security privileges.

Session Localizing global information in a
multi-user environment.

Limited View Allowing users to only see what they have access to.

Full View
with Errors

Allowing users to see everything and generate errors.

Secure Access
Layer

Integrating application security with low-level security.

Security Patterns

Joseph W. Yoder and Jeffrey Barcalow Architectural Patterns for Enabling Application Security Fourth Conference on Patterns
Languages of Programs (PLoP '97) Monticello, Illinois, September 1997. Technical report #wucs-97-34, Dept. of Computer Science,
Washington University Department of Computer Science, September 1997. Pattern Languages of Programs Design 4 edited by Neil
Harrison, Brian Foote, and Hans Rohnert. Addison Wesley, 2000

56

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 166

Analysis Patterns

David Hay, Data Model Patterns: Conventions of Thought

Dorset House Publishing, 1996 ISBN 0-932633-29-3

Martin Fowler, Analysis Patterns, Addison-Wesley, 1997

Organizational structure Hay, Fowler

Accountability Fowler

Quantities Hay, Fowler

Contracts Hay, Fowler

Accounting Hay, Fowler

Products and Inventories Hay

Material Requirements Planning Hay

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 167

How Patterns
Fit Together

• Some patterns naturally fit together

• Real designs use many patterns

• Add patterns to design one or two at a time

• One pattern leads to another

• Some patterns are alternatives

• Some patterns have similar contexts

• You can document a system by a sequence of design
patterns, representing the sequence of decisions you
made.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 168

Using Patterns in Documentation

How do you tell which patterns are in a design?

use names to give hints

describe design as a sequence of patterns

include in CASE tool

57

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 169

Methods and Patterns

Patterns fill a hole ignored by analysis and design methods.

Methods give language for modeling, patterns give
models.

Patterns are a layer on top of methods.

But patterns tell you what to do, too. Does this
contradict method?

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 170

Methods vs. Patterns

Methods try to be general-purpose, patterns are
specific.

Methods try to be domain independent, patterns are
often domain dependent.

Different communities; people working on patterns
tend to be developers who do not use any particular
method.

Will methods grow to include patterns, or will patterns
engulf methods?

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 171

What Can be a Pattern?

Pattern Languages of Program Design (edited by Coplien and
Schmidt, Addison-Wesley, 1995, ISBN 0-201-60734-4)
has:

How to make clients in client/server (Wolf and Liu)

Distributed programming (DeBruler, Aarsten et. al.,
Meszaros, Berczuk, Schmidt, Ran)

Decision support systems (Peterson)

Software process (Coplien, Whitenack, Foote and
Opdyke)

Going from analysis to design (Kerth)

Standard architectures (Edwards, Meunier, Mularz, Shaw)

58

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 172

Patterns

Let us describe our practices and let others criticize
them.

Make it easier to teach software development.

Makes it easier to see when our techniques are no
longer applicable.

Are hard to write.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 173

Writing Patterns

You should write patterns because

you will learn a lot about patterns

you probably use some patterns that haven’t been
documented yet

you meet a lot of good people that way

But writing is hard work, and not everybody has the
time or the desire to do it.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 174

Finding Patterns

Patterns come to those who wait -- must have time for
reflection.

Patterns come to those who are prepared -- must have
experience in domain of problem.

Patterns are refined in fire -- must have readers who
criticize.

It is not a pattern until you have more than one
example!

59

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 175

How to Find Patterns

Look for a solution and document it.

What is the problem? When should you use the solution?

Why don’t you use it all the time?

What are the drawbacks of the solution?

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 176

Writers’ Workshop

Excellent way to get feedback on pattern.

Author is silent while group discusses pattern. Group
pretends author is not there.

Strong moderator ensures that discussion is positive.

Say what you like before you say what you don’t like.

Discuss both form and content.

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 177

How to Learn New Patterns

Get a set of patterns.

Meet regularly to discuss them with a group.

(Brown-bag lunch works well)

Group is best so you develop shared vocabulary.

Use the vocabulary in design reviews and design sessions.

60

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 178

How to Learn New Patterns

A pattern is usually hard to understand if you don’t need
it and have never used it. Don’t worry, just get the
big picture.

Learn what patterns are available, then study the pattern
when you need it.

It isn't hard!

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 179

Further information

http://hillside.net

Pointers to mailing lists, books, ftp archives, on-line
patterns, conferences, etc.

gang-of-4-patterns-request@cs.uiuc.edu

patterns-request@cs.uiuc.edu

patterns-discussion-request@cs.uiuc.edu

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 180

Frameworks and Patterns

Frameworks are a kind of pattern.

Frameworks contain Design Patterns.

Compared to Design Patterns, frameworks are

• more concrete

• more domain specific

61

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 181

Design Patterns vs. Frameworks

Design patterns are more abstract

Frameworks are represented by programs, patterns are
illustrated by programs.

Frameworks are specialized to particular domain.

Frameworks contain design patterns

Design patterns are easier to learn

Frameworks have bigger payoff

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 182

Problems with Frameworks

Frameworks are hard to buy:
• Most are proprietary
• You can buy frameworks for GUI, distribution, or

persistence, but not for accounting, real-time
control, or scheduling

Frameworks are hard to learn:
• Many objects working together
• Design patterns make it easier

Frameworks are hard to make:
• Require experience
• Require iteration

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 183

Conclusion

Reuse is capital intensive

• Must acquire assets

• Must learn assets

Patterns are cheaper to use than frameworks, and good
preparation for frameworks. Frameworks have higher
payoffs.

Developing reusable assets is very expensive.

Buy if you can.

62

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 184

Evolution of Object-Oriented Systems

Objects are good abstractions
• put data and behavior together
• Early reuse through subclassing and copying/pasting
• Nouns are objects / Verbs are actions

Patterns come into play with experience
• More reuse through “pluggable” components
• Action / Strategies can be objects as well

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 185

Evolution of Object-Oriented Systems

Frameworks evolve as your code becomes
more reusable

• White Box vs. Black Box

• Action / Strategies can be objects as well

• Refactoring and Testing becomes very important

Adaptive Object-Models
http://www.adaptiveobjectmodel.com

• Metadata (descriptive data) allows you to evolve
the program without writing new code

• Can very quickly adapt to new business rules

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 186

Adaptive Object-Models

Separates what changes from what doesn’t.

Architectures that can dynamically adapt to new user
requirements by storing descriptive (metadata) information
about the business rules that are interpreted at runtime.

Sometimes called a "reflective architecture" or a "meta-
architecture ".

Highly Flexible – Business people
(non-programmers) can change it too.

63

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 187

PLoP Conferences
www.hillside.net

EuroPLoP™ 2003

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 188

Summary
You have been introduced and should recognize many design patterns:

Abstract Factory, Adaptor, Bridge, Builder, Chain of Responsibility,
Command, Composite, Decorator, Façade, Factory Method, Flyweight,
Interpreter, Iterator, Mediator, Memento, Null Object, Observer, Prototype,
Proxy, Singleton, State, Strategy, Template Method, Visitor

You should also be familiar with some other types of patterns and how to find
more information about them.

• Analysis Patterns

• Architectural Patterns

• Coding Patterns

• GUI Patterns

• Process Patterns

• Persistence Patterns

• Security Patterns

• …

“Patterns Generate Architecture”

Copyright 1998-2003 Joseph W. Yoder, Brian Foote & Ralph Johnson. Day 1 -- Slide 189

That’s All

