
1

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 1

Refactoring
Principles

Joseph W. Yoder

The Refactory, Inc.
University of Illinois

yoder@refactory.com
http://www.refactory.com

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 2

Presenter

Joseph Yoder
! e-mail: yoder@refactory.com
! www: http://www.joeyoder.com

! www.refactory.com

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 3

UIUC Patterns Group
Software Architecture Group
Ralph Johnson’s Group 

Objects
Reuse
Frameworks
Adaptive Architecture
Components
Refactoring
Evolution 
Patterns



2

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 4

The Refactory, Inc.

The Refactory, Inc. was founded in 1998 as a 
consortium of object-oriented experts 
dedicated to helping organizations succeed 
with objects.
Founders and Affiliates have a total of over 
120 years of combined software development 
experience with over 80 years dedicated to 
Object-Oriented development.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 5

The Refactory Principals

John Brant
Brian Foote

Ralph Johnson
Don Roberts
Joe Yoder

Refactory Affiliates
Dragos Manolescu

Brian Marick
Bill Opdyke

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 6

The Refactory principles are experienced in software 
development, especially in object-oriented technology. 
We've been studying and developing software since 
1973. Our current focus has been object-oriented 
technology, software architecture, and patterns. We 
have developed frameworks using Smalltalk, C++, and 
Java, have helped design several applications, and 
mentored many new Smalltalk, Java, and C++, C# 
developers.  Highly experienced with Frameworks, 
Software Evolution, Refactoring, Objects, Flexible and 
Adaptable Systems (Adaptive Object-Models), Testing, 
Workflow Systems, and Agile Software Development 
including methods like eXtreme Programming (XP).

The Refactory, Inc.



3

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 7

Outline of Course
Introduction to Refactoring
Bad Code Smells
Prerequisite of Refactoring (Testing)
Catalogue of Refactorings
Mechanics of Refactoring
! Composing Method/Moving Features
! Organizing Data/Simplifying Conditions
! Simplify Methods/Generalization
Tools for Refactoring
Large Refactorings
Refactoring and Design Patterns
Summary

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 8

The Lie
(aka: The Waterfall Model)

First, you gather requirements
Then, you analyze them
Then, you design the system
Then, you code it
Then, you test it
Then, you are done (except for maintenance)

The Fact is:
! Software is never “finished”

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 9

Reality
“Build one to throw away.” - Fred Brooks

You will never get it right the first time 
! Can’t understand the problem domain
! Can’t understand user requirements
! Can’t understand how the system will change

Result
! Original design is inadequate
! System becomes convoluted and brittle
! Changes become more and more difficult



4

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 10

What’s Hard?

EASY HARD
Design Coding
Coding Debugging
Debugging Fixing the Bug
Fixing the Bug Design

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 11

Evolutionary Software Development
“Grow, don’t build software.” - Fred Brooks

Prototype
! solidifies user requirements
! sketch of system design

Expansion
! add functionality
! determine “hot-spots”

Consolidation
! correct design defects
! introduce new abstractions

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 12

Imagine a World Where...
Your assignments are "fresh starts" (no 
backward compatibility concerns).

You understand the domain.

Your funder will pay until you are satisfied 
with the results!

A nice place to apply object-oriented design 
techniques!

A nice dream, isn't it?



5

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 13

A More Realistic Scenario:
You are asked to extend an existing 
piece of software.
You have a less-than-complete 

understanding of what you are doing.
You are under schedule pressures to 
produce!

How to support the process of change?

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 14

Extending a Software System:
One Approach

Re-write the program!
! Apply design experience.
! Correct the ills of the past.
! Creative and fun!

But...
! Will it do all that it used to do?
! Who will foot the bill?

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 15

Extending a Software System:
Another Approach

Copy and Modify! 
! Expedient.
! Demonstrating reuse (without really 

understanding what you are reusing)!

But...
! Errors propagate.
! Program gets bloated.
! Program design gets corrupted.
! Incremental cost of change escalates.



6

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 16

Extending a Software System:
A Middle Ground
Restructure (refactor) the existing software: 

! Start with the existing software base.
! Apply design insights; extract reusable abstractions and 

components.
! Clarify the software architecture.
! Prepare program to make the additions easier.

Then, add your new features!
Some Advantages:

! leverage past investment
! reduce duplication
! streamline program.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 17

Definitions

Refectory - n. - A dining hall, especially 
in a monastery.
Refractory - n. - 1. Referring to a period 
of unresponsiveness to a nervous or 
sexual stimulus after such a stimulus. 2. 
The period of time during which our 
Chief of State conducts business.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 18

Definition of Refactoring

vt. - The process of redesigning the 
abstractions in a program
n. - A behavior-preserving source-to-source 
program transformation

Substantial changes to software can be 
characterized as refactorings plus additions.

Interface design and functional factoring constitute the key intellectual 
content of software and are far more difficult to create or re-create than 
code. - Peter Deutsch



7

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 19

A Simple Refactoring

Object

Concrete1 Concrete2

Object

Concrete1 Concrete2

NewAbstract

Create Empty Class

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 20

A Complex Refactoring

Array

Matrix

Matrix

MatrixRep

ArrayRep

rep

SparseRep IdentityRep

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 21

Where Refactorings Come From

Application Maintenance
Application Extension
Application Development
Framework Development

“Refactoring often applies Design Patterns”



8

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 22

Barriers To Refactoring (1)

Complexity
! Understanding the design is hard.
! Changing the design of an existing

system can be hard.
! Introducing errors defeats the purpose

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 23

Barriers to Refactoring (2)

Schedules
! Every software project is under time 

pressure.
! Get paid to add new features.
! If it ain’t broke, don’t fix it.
! Refactoring can take a lot of time.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 24

Why Should you Refactor
Refactoring improves the Design

Makes Software easier to understand

Helps you find bugs 

Helps you program faster



9

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 25

When Should you Refactor
The Rule of Three

Refactor when you add function

Refactor when you need to fix a bug 

Refactor during code reviews

There are also forces for when you should 
not refactor but there is a debt to pay

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 26

Consequences of 
not Refactoring

Changes are made in the most 
expedient way
Design becomes more corrupt
Code becomes more brittle
Changes become more expensive 
and more frequent
Big Balls of Mud – Foote & Yoder

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 27

Code Smells

If it stinks, change it…….Grandma Beck

There are certain things that lead to code 
smells and there are certain refactorings 
that help us deal with these smells



10

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 28

Duplicate Code

“Do everything exactly once”
Duplicate code makes the system
harder to understand
Duplicate code is harder to maintain
! Any change must be duplicated
! The maintainer must know this

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 29

Duplicate Code - fix

Push identical methods up to
common superclass
Push the more general method up
Put the method into a common 
component (e.g., Strategy)
(See also: Large Methods)

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 30

Large Methods

The method is the smallest
unit of overriding
No metric will always be correct
Statements within a method should
be at the same level of abstraction



11

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 31

Large Methods - fix

Extract Pieces as Smaller Methods!
! If an entire method is long and low-level,

find the sequence of higher-level steps.
! Comments in the middle of a method

often point out good places to extract.

Smaller pieces can often be reused

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 32

Large Classes

Again, no metric suffices
Many methods
Many instance variables
Look for disparate sets of methods
and instance variables

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 33

Large Classes - fix

Create compositions of smaller classes
Find logical sub-components of the 
original class and create classes to 
represent them
Move Methods and instance variables 
(Move Fields) into the new components



12

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 34

Instance variables
only used sometimes

If some instances use it, and others 
don’t -- create subclasses
If only used during a certain operation, 
consider an operator object

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 35

Co-occurring Parameters

Often disguise a latent abstraction
! (e.g., Point)

Once the object exists, often behavior
can be added naturally

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 36

Co-occurring Parameters - fix

Create an object to hold all of the co-
occurring parameters
Pass it around instead
Find methods that should be on the
new object



13

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 37

Feature Envy

Symptom of methods in the wrong 
place
A method is always accessing values 
from another class
Seems to be more interested in another 
class rather than the class it lives

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 38

Feature Envy - fix

Use Move Method to put the method 
into the class it is usually working on

If it is interested in multiple classes, put 
the method into the class where it 
accesses most of the values

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 39

Nested Conditionals

Symptom of methods in the wrong 
place
Rather than switching allow method 
lookup to do the switching
New cases do not require changing 
existing code (The Ultimate Goal)



14

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 40

Nested Conditionals - fix

If conditional involves type test, put the 
method on that class
! isKindOf:, class, isMethod, hasMethod

If conditional involves isEmpty, isNil, 
etc., consider the Null Object pattern

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 41

Inappropriate Intimacy

Classes become far too intimate and 
spend too much time delving into each 
others’ private parts
Tightly coupled classes…you can’t 
change one without changing the other
Too much inheritance can lead to over 
intimacy

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 42

Inappropriate Intimacy - fix

Use Move Method and Move Field to 
separate the pieces to reduced intimacy
If classes have common interests, use 
Extract Class to put the commonality in 
a safe place…more reusable

End result is lower coupling



15

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 43

Parallel Hierarchies
Every time you make a subclass of one 
class, you have to make a subclass of 
another class from another hierarchy.
If you used good naming techniques, 
you can recognize this since the prefix 
of your class names will be the same for 
both hierarchies
Move Method and Move Field can help 
the referring class disappear

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 44

Comments

We are not against comments but…

If you see large methods that have 
places where the code is commented, 
use Extract Method to pull that out to a 
comment

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 45

Comments Example
void printOwing (double amount) {

printBanner();
//print details
System.out.println (name: “ + _name);
System.out.println (amount: “ + amount);
…}

void printOwing (double amount) {
printBanner();
printDetails();}

void printDetails (double amount) {
System.out.println (name: “ + _name);
System.out.println (amount: “ + amount);
…}



16

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 46

Prerequisites of Refactoring

Since you are changing the code base, 
it is IMPORTANT to validate with tests.

There are also a time to refactor and a 
time to wait.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 47

Deciding Whether A 
Refactoring is Safe

"A refactoring shouldn't break a program.”
! What does this mean?

A safe refactoring is behavior preserving.

It is important not to violate:
! naming/ scoping rules.
! type rules.

"The program should perform the same 
after a refactoring as before.”

Satisfying timing constraints.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 48

Add Entity Refactorings

Add Instance Variable
Add Class Variable
Add Class
Add Method



17

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 49

Remove Entity Refactorings

Remove Instance Variable
Remove Class Variable
Remove Class
Remove Method

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 50

Rename Entity Refactorings

Rename Instance Variable
Rename Class Variable
Rename Temporary Variable
Rename Class
Rename Method*

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 51

Types of Method Renaming

Simple Rename
Permute Arguments
Add Argument
Remove Argument



18

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 52

Move Entity Refactoring

Push Up/Down Instance Variable
Push Up/Down Class Variable
Push Up/Down Method
Move Method to Component
Move Instance Variable to Component
Change Superclass

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 53

Sub-method Refactorings

Extract Code as Method
Extract Code as Temporary
Inline Method
Inline Temporary

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 54

Tactics of Refactoring

Since refactorings are supposed to
be behavior-preserving, they can 
be composed.
Learning the operations is akin 
to learning arithmetic
Important to Test after Refactorings



19

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 55

Using Standard Tools

To be safe, must have tests
Should pass the tests before
and after refactoring
! Commercial Testing Tools
! Kent Beck’s Testing Framework

(SUnit, JUnit)
Take small steps, testing between each
Java is getting better tools

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 56

Refactoring Scripts

Experts develop internal scripts 
Rename method
! 1. Browse all implementers
! 2. Browse all senders
! 3. Edit and rename all implementers
! 4. Edit and rename all senders
! 5. Remove all implementers
! 6. TEST!!!!

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 57

Composing Method Catalogue

Extract Method, Inline Method, 
Inline Temp, Replace Temp with Query, 
Introduce Explaining Variable, 
Split Temporary Variable, 
Remove Assignments to Parameters, 
Replace Method with Method Object, 
Substitute Algorithm



20

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 58

Extract Method

void printOwing(double amount) {
printBanner();

//print details
System.out.println(“name:” + _name);
System.out.println(“amount:” + _amount);

}

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 59

Extract Method (2)

void printOwing (double amount) {
printBanner();
printDetails(amount);

} 

void printDetails (double amount) {
System.out.println(“name:” + _name);
System.out.println(“amount:” + _amount);

}

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 60

Extract Method Mechanics

Create a new method and name it after the intention of 
the code to extract.

Copy the extracted code from the source to the new 
method.

Scan the extracted code for references to any variables 
that are local to the source method.

See whether any temps are used only within extracted 
code.

Pass into target method as parameters local-scope 
variables that are read from the extracted code.

Replace the extracted code in the source method.



21

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 61

Inline Method
int getRating() {

return (moreThanFiveLateDeliveries()) ? 2 : 1;
}
boolean moreThanFiveLateDeliveries() {

return _numberOfLatgeDeliveries > 5;
}

int getRating() {
return (_numberOfLatgeDeliveries > 5) ? 2 : 1;

}

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 62

Inline Method Mechanics

Check that method is not polymorphic.
! Done inline if subclasses override the method.

Find all calls to method.
Replace each call with the method body.
Compile and test.
Remove the method Definition.
Compile and test.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 63

Inline Temp

double basePrice = anOrder.basePrice();
return (basePrice > 1000)

return (anOrder.basePrice > 1000)



22

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 64

Inline Temp Mechanics

Declare the temp as final.
! Insures the temp is really assigned only once.

Find all references to the temp and replace 
with the right-hand side of the assignment.
Compile and test after each change.
Remove the declaration and the assignment.
Compile and test.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 65

Replace Temp with Query
double basePrice = _quantity * _itemPrice;
if (basePrice > 1000)

return basePrice * 0.95;
else

return basePrice * 0.98

if (basePrice() > 1000)
return basePrice() * 0.95;

else
return basePrice() * 0.98

double basePrice() {
return _quantity * _itemPrice;}

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 66

Replace Temp Mechanics

Look for temp assigned to once.
! If more than once, consider split temporary.

Declare the temp as Final.
Compile.
Extract the right hand side into a method.
Compile and test.



23

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 67

Introduce Explaining Variable
double basePrice = _quantity * _itemPrice;
if (basePrice > 1000)

return basePrice * 0.95;
else

return basePrice * 0.98

if (basePrice() > 1000)
return basePrice() * 0.95;

else
return basePrice() * 0.98

double basePrice() {
return _quantity * _itemPrice;}

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 68

Introduce Explaining Mechanics

Declare a final temporary variable, and 
set it to the result of part of the complex 
expression.
Replace the result part of the expression 
with the value of the temp.
! If the result part of the expression is 

repeated, replace the repeats one at a time.
Compile and test.
Repeat for other parts of the expression.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 69

Split Temporary Variable

double temp = 2 * (_height * _widgth);
System.out.println (temp)
temp = _height * _width;
System.out.println (temp)

final double perimeter = 2 * (_height * _widgth);
System.out.println (perimeter)
final double area = _height * _width;
System.out.println (area)



24

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 70

Split Temporary Mechanics
Change the name of the temp at is 
declaration and its final assignment.
Declare new temp as final.
Change all the references of the temp up 
to its second assignment.
Declare the temp as its second 
assignment.
Compile and test.
Repeat in stages.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 71

Remove Assignments to Params
int discount (int inputVal, int quantity, int yearToDate) {

if (inputVal > 50) inputVal -= 2;

int discount (int inputVal, int quantity, int yearToDate) {
int result = inputVal;
if (inputVal  > 50) result -= 2;

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 72

Remove Assignments Mechanics

Create a temp variable for the parameter.
Replace all references to the parameter, 
made after the assignment, to the 
temporary variable.
Change the assignment to assign to the 
temporary variable.
Compile and test.



25

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 73

Remove Method with 
Method Object
Class Order …

double price() {
double primaryBasePrice;
double secondaryBasePrice;
double tertiaryBasePrice;
// long computation;
…}

Order
price()

PriceCalculator
primaryBasePrice

secondaryBasePrice
tertiaryBasePrice

compute()

1

return new PriceCalculator(this).compute()

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 74

Remove Method to
Method Object Mechanics

Create a new class named after method.
Give the new class a final field for the object 
that hosted the original method.
Give the new class a constructor for the original 
object and each parameter.
Give the new class a compute method.
Copy the body of original method to compute.
Compile.
Replace the old method with the one that 
creates the new object and calls compute.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 75

Moving Features Catalogue

Move Method, Move Field,
Extract Class, Inline Class,
Hide Delegate
Remove Middle Man
Introduce Foreign Method
Introduce Local Extension



26

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 76

Move Method

Class 1
aMethod()

Class 2

Class 1

Class 2
aMethod()

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 77

Move Method Mechanics
Examine all features used by the source method that 
are defined in the source class.  Consider whether they 
also should be moved.
Check the sub and superclasses of the source class for 
other definitions.
Declare the method in the target class.
Copy the code from the source method to the target.
Compile the target class.
Determine how to reference the correct target object.
Turn the source method into a delegating method.
Compile and test.
Decide whether to remove the source method or retain 
it as delegating method.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 78

Move Field

Class 1
aField

Class 2

Class 1

Class 2
aField



27

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 79

Move Field Mechanics
If the field is public, use encapsulate field.
Create a field in the target class with getters 
and setters.
Compile the target class.
Determine how to reference target object from 
the source.
Remove the field on the source class.
Replace all references to the source field with 
references to the appropriate method on the 
target. 

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 80

Extract Class
Person
name

officeAreaCode
officeNumber

getTelephonNumber

TelephoneNumber
areaCode
number

getTelephoneNum()
1

Person
name

getTelephoneNumber

officeTelephone

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 81

Extract Class Mechanics
Decide how to split the responsibilities of the 
class.
Create a new class to split responsibilities.
Make a link from the old to the new class.
Use Move Field on each field to move.
Compile and Test.
Use Move Method on each desired method.
Compile and Test.
Review and reduce the interfaces of the class.



28

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 82

Inline Class

Person
name

officeAreaCode
officeNumber

getTelephoneNumber

TelephoneNumber
officeAreaCode
officeNumber

getTelephoneNum()
1

Person
name

getTelephonNumber

officeTelephone

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 83

Organize Data Catalogue

Self Encapsulate Field, Replace Data Value 
with Object, Change Value to Reference, 
Change Reference to Value, Replace Array 
with Object, Duplicate Observed Data, 
Change (Uni|Bi) directional Association to 
(Bi|Uni) directional, Replace Magic Number, 
Encapsulate (Field|Collection), Replace 
Record with Data Class, ……..

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 84

Self Encapsulate Field

private int _low, _high;
boolean includes (int arg) {

return arg >= _low && arg <= _high; }

private int _low, _high;
boolean includes (int arg) {

return arg >= getLow() && arg <= getHigh(); }
int getLow() {return _low;);
int getHigh() {return _high;);



29

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 85

Self Encapsulate Mechanics

Create a getting and setting method for 
the field.
Find all references to the field and 
replace them with a getting or setting 
method.
Make the field private.
Compile and Test. 

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 86

Replace Data Value with Object
Person
name

address: String

Address
street
city

state
zip

1

Person
name

getAddress

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 87

Replace Data Value Mechanics
Create the class for the value.
Compile.
Change the type of the field in the source class 
to the new class.
Change the getter in the source class to call the 
getter in the new class.
If the field is mentioned in the source class 
constructor, assign the field.
Change the getting message to create a new 
instance of the new class.
Compile and Test.



30

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 88

Change Value to Reference
Address

street
city

state
zip

1

Person
name

getAddress

Address
street
city

state
zip

1

Person
name

getAddress

*

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 89

Change Value Mechanics
Use Replace Constructor with Factory Method.
Compile and Test.
Decide what object is responsible for providing 
access to the objects.
Decide whether the objects are created on the 
fly or not.
Alter the factory method to return the 
referenced object.
Compile and Test.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 90

Change Reference to Value

Address
street
city

state
zip

1

Person
name

getAddress

Address
street
city

state
zip

1

Person
name

getAddress

*



31

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 91

Change Reference Mechanics
Check that the candidate object is 
immutable or can become immutable.
Create an equals method and a hash 
method.
Compile and test.
Consider removing the factory method 
making a constructor public.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 92

Replace Array with Object
String[] row = new String[3];
row[0] = “Liverpool”;
row[1] = “15”’;

Performance row = new Performance();
row.setName(“Liverpool”);
row.setWins(“15”’);

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 93

Replace Array Mechanics

Create a new class to represent the information 
in the array.  Give it a public field for the array.
Change all users of the array to use the new 
class.
Compile and Test.
One by one, add getters and setters for each 
element of the array.
Create a field for each element of the array and 
change the accessors to use the field.
Remove the array.  Compile and Test.



32

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 94

Encapsulate Field

public String _name;

private String _name;
public String getName() {return _name;};
public void setName(String arg) {_name = arg;);

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 95

Encapsulate Field Mechanics
Create getting and setting methods for the 
field.
Find out clients outside the class that reference 
the field.  If the client uses the value, replace 
the reference with a call to the getting method.
Compile and Test after each change.
Once all clients are changed, declare the field 
as private.
Compile and Test.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 96

Simplifying Conditionals Catalogue

Decompose Conditional, Consolidate 
Conditional Expression, Consolidate 
Duplicate Conditional Fragments, 
Remove Control Flag, Replace Nested 
Conditionals with (Guard Clauses | 
Polymorphism), Introduce Null Object, 
Introduce Assertion



33

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 97

Decompose Conditional
if (date.before (SUMMER_START) || date.after (SUMMER_END)

charge = quantity * _winterRate + _winterServiceCharge;
else charge = quantity * _summerRate;

if (notSummer(date))
charge = winterCharge(quantity)

else charge = summerCharge(quantity);

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 98

Decompose Mechanics

Extract the conditional into its own 
method.
Extract the then part and the else part 
into their own methods.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 99

Consolidate Conditional
double disabilityAmount() {

if (_seniority < 2) return 0;
if (_monthsDisabled > 12) return 0;
if (_isPartTime) return 0;
//compute the disability amount

double disabilityAmount() {
if (isNotEligableForDisability()) return 0;
//compute the disability amount



34

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 100

Consolidate Mechanics

Check that none of the conditionals has 
side effects.
Replace the string of the conditional with 
a single conditional statement using 
logical operators.
Compile and Test.
Consider using Extract Method on the 
Conditional.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 101

Consolidate Duplicate 
Conditional Fragments

if (isSpecialDeal()) {
total = price * 0.95;
send();

}
else {

total = price * 0.98;
send();

}

if (isSpecialDeal())
total = price * 0.95;

else
total = price * 0.98;

send();

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 102

Consolidate Dup Mechanics

Identify the code that is executed the 
same way regardless of the conditional.
If the code is at the beginning, move it 
before the conditional.
If the code is at the end, move it after 
the conditional.
If the code is in the middle, see if it 
changes anything.



35

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 103

Replace Nested Conditional 
with Guard Clauses

A method has conditional behavior that 
does not make clear the normal path of 
execution.
Use guard clauses for the special cases!

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 104

Replace Nested Conditional 
with Guard Clauses

double getPayAmount() {
double result;
if (_isDead) result = deadAmount();
else {

if (_isSeparated) result = separatedAmount();
else {

if (_isRetired) result = retiredAmount();
else result = normalAmount;}}}

double getPayAmount() {
if (_isDead) return deadAmount();
if (_isSeparated) return separatedAmount();
if (_isRetired) return retiredAmount();
return normalAmount;}}}

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 105

Replace Nested Mechanics

For each check put in the guard clause.

Compile and Test after each check is 
replace with a guard clause.

Might consider consolidate conditional if 
the guards use the same result.



36

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 106

Replace Conditional with 
Polymorphism

You have a conditional that chooses 
different behavior depending on the type 
of an object
Move each leg of the conditional to an 
overriding method in a subclass.  Make 
the original method abstract!

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 107

Replace Conditional with 
Polymorphism

double getSpeed() {
switch (_type) {

case EUROPEAN:
return getBaseSpeed(); 

case AFRICAN:
return getBaseSpeed() – getLoadFactor() * _number 

ofCocunuts;
…} Bird

getSpeed

European

getSpeed

African

getSpeed

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 108

Replace Polymorphism 
Mechanics

If the conditional is part of a larger 
statement, take apart the conditional and 
use Extract Method.
If necessary, use Move Method to place 
the conditional at the top of the 
inheritance hierarchy.
Create classes and copy the body of the 
leg of the conditional into the subclass.
Compile and Test…and continue on.



37

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 109

Strategy
(an example)

+doSomethingUseful()
#myPrivateDraw()

-attr1
-attr2

Client

#setButtonWidth(in width : int)
#setButtonShadowWidth(in width : Integer)
#buttonWidth() : int
#shadowWidth() : int

ButtonDisplay

#buttonWidth() : int
#shadowWidth() : int

NTButtonDisplay UNIXButtonDisplay

*

*

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 110

Moving Code
“Refactoring” 

To move a function to a different class, add an argument 
to refer to the original class of which it was a member 
and change all references to member variables to use 
the new argument.

If you are moving it to the class of one of the arguments, 
you can make the argument be the receiver.

Moving function f from class X to class B

class X {
int f(A anA, B aB){

return (anA.size + size) / aB.size;
} ...

class B {
int f(A anA, X anX){

return (anA.size + anX.size) / size;
} ...

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 111

You can also pass in 
a parameter object 
which gives the 
algorithm all of the 
values that it will 
need.

Inner Classes can 
help by providing 
access to values that 
the algorithm may 
need.

Car f(a, b, c)
{if this.x > a then

this.x = a+b
else if this.x < a then

this.y = a+b
else

this.x = a+b }

Car FStrategy

f(CarPars Car)
{if this.x > a then

this.x = a+b
else if this.x < a then

this.y = a+b
else

this.x = a+b }

CarPars
a, b, c
x, y

Moving Code
“Refactoring” 



38

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 112

Introduce Null Object

You have repeated checks for a null value.
Repalce the null value with a null object!

if (address = null) System.out.println(“”)
else System.out.println(address);

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 113

NullObject
������������������������� Bobby Woolf, PLoPD 3

���	��
�����	��
�����	��
�����	��
��rovide surrogate for another object that shares 
same interface usually does nothing but can provide 
default behavior encapsulate implementation decisions of 
how to do nothing.

�������	
�������	
�������	
�������	


Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 114

Simpler Method Calls Catalogue

Rename Method, (Remove|Add) Parameter, 
Separate Query with Modifier, Parameterize 
Method, Replace Parameter with Explicit 
Methods, Preserve Whole Object, Replace 
Parameter with Method, Introduce 
Parameter Object, Remove Setting Method, 
Hide Method, Replace Constructor with 
Factory Method, Encapsulate Downcast, 
Replace Error Code with Exception, Replace 
Exception with Test



39

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 115

Rename Method

The name of the method does not reveal 
its purpose.
Change the name of the method!

Customer

getInvcdlmt

Customer

getInvoicecreditlimit

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 116

Add Parameter

A method needs more information from 
the caller.
Add a parameter for an object that can 
pass on this information!

Customer

getContact()

Customer

getContact(:Date)

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 117

Remove Parameter

A parameter is no longer used by the 
method body.
Remove the parameter!

Customer

getContact(:Date)

Customer

getContact()



40

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 118

Rename Method

The name of the method does not reveal 
its purpose.
Change the name of the method!

Customer

getInvcdlmt

Customer

getInvoicecreditlimit

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 119

Generalization Catalogue

Pull Up (Field|Method|Constructor Body)
Push Down (Method|Field)
Extract (Subclass|Superclass|Interface)
Collapse Hierarchy
Form Template Method
Replace Inheritance with Delegation
Replace Delegation with Inheritance

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 120

Pull Up Field

Two subclasses have the same field.

Extract it into the superclass!



41

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 121

Push down Field
A field is only used in special cases 
(subclasses).

Move the field into the subclasses!

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 122

Pull Up Method
Two subclasses have the same method.

Extract it into the superclass!

Might be a place to apply theTemplate Method 
Design Pattern!

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 123

Push down Method
A method is only used in special cases 
(subclasses).

Move the method into the subclasses!



42

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 124

Extract Superclass
You have two classes with similar features.

Create a superclass and move the common 
features to the superclass!

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 125

Extract Interface
Several Clients use the same subset of a class’s 
interface, or two classes have part of their 
interface in common.

Extract the subset into an interface!

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 126

Summary

We have seen the mechanics for many 
of the Refactorings.

When you find smelly code, you often 
apply Refactorings to clean your code.

Refactorings do often apply Design 
Patterns.



43

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 127

Refactorings

Create Empty Class Reorder Method Arguments 
Add Instance Variable Convert VarRef to Message 
Add Method Extract Code as Method 
Delete Class Inline Method 
Delete Instance Variable Change Superclass 
Delete Methods Pull Up Instance Variable 
Rename Class Pull Up Method 
Rename Instance Variable Push Down Instance Variable 
Rename Method Push Down Method 
Add Method Argument  Move InstVar into Component 
Delete Method Argument Move Method into Component 

 

 

The Refactory Browser in Smalltalk 
handles these and more…Eclipse is 
evolving to handle a good subset.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 128

Eclipse  Refactoring (1)

Eclipse provides powerful 
Refactoring tools that has the 
basics of refactoring built into it.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 129

Eclipse Refactoring (2)
Powerful Move Functions
Copy Class 
Extract Method 
Change Method Signature
Convert Anonymous Class to Nested
Convert Nested Type
Convert Local Variable to Field
Encapsulate Field
Decompose Conditional 
Extract Local Variable (Introduce Explaining Variable) 
Extract Superclass / Extract Interface / Extract Constant
Push Up / Pull Down
Rename Type / Rename Member
Rename Parameter / Rename Local Variable



44

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 130

C# Refactoring (1)

C# Refactory is a refactoring, 
metrics and productivity add-in for 
Microsoft Visual Studio.NET and is 
a must-have if you do test driven 
development with a unit testing 
tool like csUnit.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 131

C# Refactoring (2)

Extract Method 
Decompose Conditional 
Extract Variable (Introduce Explaining Variable) 
Extract Superclass 
Extract Interface 
Copy Class 
Push Up Members 
Rename Type 
Rename Member 
Rename Parameter 
Rename Local Variable

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 132

Unit Testing JUnit & SUnit

www.junit.org



45

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 133

Design Patterns (1)

What varies Design Pattern 

Algorithms Strategy, Visitor 

Actions Command 

Implementations Bridge 

Response to change Observer 
 

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 134

What varies Design Pattern 

Interactions between objects Mediator 
 

Object being created 
Factory Method, Abstract

  Factory, Prototype 

Structure being created Builder 

Traversal Algorithm Iterator 

Object interfaces Adapter 

Object behavior Decorator, State 
 

Design Patterns (2)

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 135

Large Refactorings

����������	
��	���
����	������

	����������
�������	��������������
�

�	��
	��	
�����
������
�������������

����������	
�	������
�����		��

�����
�������	
����	��������	�����



46

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 136

Four Big  Refactorings

�������������
������
��

�	
�������	�������������
��	� �!����

"���������	���
��	�������
����	


#$������%��������

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 137

Tease Apart Inheritance

�	��������
��
������
������������������

����	�
���&	�!	������	
���

�����������	
�����	
����������

�������
�����
��������������	����	���

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 138

Tease Apart Example
Deal

Active Deal Passive Deal

Tabular 
Active Deal

Tabular 
Passive Deal

Deal

Active
Deal

Passive
Deal

Presentation Style

Tabular 
PresStyle

Single 
PresStyle

1



47

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 139

Tease Apart Mechanics
��������	�
�	���������	���	�����	���	��	�
�	


������
��

������	�
��
	��	��	���	���������

���	�������	�����	��	�
�	����	����������

�	������	��	�����	��	�
�	���������	��	���	

���	��	��������	��������	��	�
��	������

������	����������	�	�
�	���������	�����	��	

���
	���������

���	���	���
�	�	���	�
�	��
����	��	

���
	���������

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 140

Convert Procedural To Object

�	��������	���&�����
��
���	��������

"�����

�����	���������������
������������������

����	����	��
������������	����	��
���


����	����������

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 141

Convert Procedural Example

Order Calculator
determinePrice()
determineTaxes()

Order

OrderLine

Order
getPrice()
getTaxes()

OrderLine
getPrice()
getTaxes()



48

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 142

Convert Procedural Mechanics
 �!�	���
	�����	����	���	����	��	���	�	����	

����	�����	���
	���������

 �!�	���	���������	���	���	���	��	���	�	

������	������

 �!�	���
	���	��������	���	�����	�������	

���
�	���	�
�	�������	�����������	�	����!	��	

����		"�	��	����!	��	���#	���	���	

���
�	�	���	�	�
�	����������	������

�������	�����	��$��	����	���	�	�
�	

��
����	����	���	�
�	�������	������

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 143

Extract Hierarchy

�	����������������������	�
���		������

&	��'�����������
���������	������
��

�	
����	
����

�����������	
�����	�������������
��	
�	�

���	��������������������������
���

�����

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 144

Extract Hierarchy

BillingScheme

Business Billing 
Scheme

Residential 
Billing Scheme

Billing 
Scheme



49

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 145

Extract Hierarchy Mechanics
��������	�	���������

������	�	��������	��	���
	�������	����	���	

���	%������	���������	���
	&�����	���
��

'��	�	����	���	���
�	�
��	������	

�������	����	�	�
�	���������		���
�	�	�
��	

��	�����	�����	�������	���
�	��	�
�	����������	

���	(���	���	���	(��
	���	���
��

)�	���	���	���	���������	���	�
��	���	

���	��	�
�	
������
�	���	�������	�����	

 �������	���
�	������	(�������

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 146

Refactoring Addresses Some
Key Leverage Points

Refactoring is a technique that works with Brooks’ 
“promising attacks” (from “No Silver Bullet”):
! buy rather than build:  restructuring interfaces to support 

commercial SW
! grow don’t build software:  software growth involves 

restructuring
! requirements refinements and rapid prototyping:  

refactoring supports such design exploration, and 
adapting to changing customer needs

! support great designers:  a tool in a designer’s tool chest.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 147

Despite These Benefits, Some People Are 
Still Reluctant to Refactor, Because…

They might not understand how to 
refactor.
If the benefits are long term, what’s in it 
for them (in the short term)?
Refactoring is an “overhead” activity; 
people are paid to write new features.
Refactoring might break the existing 
program.



50

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 148

Addressing Concerns 
About Refactoring
Understanding how to refactor:
! Opdyke and Roberts doctoral thesis, and 

related publications.
! Refactoring:  Improving the Design of Existing 

Code (Fowler, Beck, Brant, Opdyke, and 
Roberts; Addison-Wesley, 1999). 

Achieving near-term benefits:
! Interleave refactoring and incremental 

additions.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 149

Addressing Concerns 
About Refactoring
Reducing the overhead of refactoring:
! Use browsers, text editors, and tools to 

reduce manual effort.
! Try it!  Refactoring saves in overall 

development time near term.
Refactoring safely:
! Need to have unit-level test suites that test 

the functionality of each module.
! Apply precondition checking and test suites 

described in refactoring references.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 150

Refactoring:  Two Hard Problems
Is it safe to apply a refactoring?

! (Discussed earlier.)

Which refactorings should you apply?



51

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 151

Deciding What Refactorings To Apply
It is the role of the designer to understand 
the goals of their application.

Reasoning based upon program structure:
! more powerful than upon simple textual scans.

Heuristics can be applied to automatically 
detect some structural abnormalities.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 152

Deciding What Refactorings To Apply
Commonality analysis:  
! for example:  common names/ types may 

suggest a common abstraction.

Complexity analysis:
! For example:  very large, complex classes (or 

large functions, or functions with many 
arguments) are candidates for simplification/ 
splitting.

Useful references:
! Johnson/ Foote “Designing Reusable Classes” 

" http://www.laputan.org/drc/drc.html
! Beck/ Fowler “Bad Smells in Code” 

" Refactoring text/ chapter 3.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 153

Refactoring Strategies
Foote/ Opdyke “Lifecycle and Refactoring 
Patterns That Support Evolution & Reuse” 
(PLOP ’94).
! Prototype/ Initial Design; Expand; Consolidate.
! http://www.laputan.org/lifecycle/Lifecycle.html

Various Strategies 
(Compiled by Roberts & Yoder):
! Extend – refactor
! Refactor – extend
! Debug – refactor
! Refactor – debug
! Refactoring to understand.



52

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 154

Refactoring Non-OO software
Some refactorings are general; others are O-O 
specific.
Some programming practices aid refactoring:
! Data abstraction, information hiding, and reusable 

components result in code that is more amenable to 
refactoring later.

Other programming practices cause problems:
! Pointer arithmetic and aliasing make it more difficult to 

check the safety of refactoring.
Refactoring is a sociological as well as a technical 
concern.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 155

Refactoring Strategies

Extend - Refactor
Refactor - Extend
Debug - Refactor
Refactor - Debug
Refactoring to Understand

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 156

Extend then Refactor

Find a similar class/method and copy it

Make it work

Eliminate redundancy



53

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 157

Refactor then Extend

Something seems too awkward
to implement

Refactor the design to make the
change easy

Make the change

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 158

Debug then Refactor

Fix the bug

Refactor the code to make the bug 
obvious
! Extract method
! Assign good names
! Get rid of magic numbers and expressions

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 159

Refactor then Debug

Since refactoring is behavior-preserving,
it preserves bad behavior.

Refactor to simplify complicated 
methods

Debug it



54

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 160

Refactor to Understand

What was obvious to the author
isn’t always obvious
Break apart large methods
Remove magic numbers / expressions
GIVE GOOD NAMES
Don’t worry about performance

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 161

Integrating Refactoring (2)

Refactor after a release
! Little more breathing room
! The design is still fresh in your mind

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 162

Integrating Refactoring (3)

Extreme Programming
! Listen
! Test
! Code
! Refactor Continually

Make it work, Make it right, Optimize It!



55

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 163

What is Refactoring

Refactoring is a kind of reorganization. Technically, it 
comes from mathematics when you factor an expression 
into an equivalence--the factors are cleaner ways of 
expressing the same statement. Refactoring implies 
equivalence; the beginning and end products must be 
functionally identical. You can view refactoring as a 
special case of reworking. 

Practically, refactoring means making code clearer and 
cleaner and simpler and elegant. Or, in other words, 
clean up after yourself when you code. Examples would 
run the range from renaming a variable to introducing a 
method into a third-party class that you don't have 
source for. 

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 164

What is Refactoring

Refactoring is not rewriting, although many 
people think they are the same. There are 
many good reasons to distinguish them, such 
as regression test requirements and 
knowledge of system functionality. The 
technical difference between the two is that 
refactoring, as stated above, doesn't change 
the functionality (or information content) of 
the system whereas rewriting does. Rewriting 
is reworking.

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 165

Summary on Refactoring

Refactoring is typically done in small steps. After each 
small step, you're left with a working system that's 
functionally unchanged. Practitioners typically interleave 
bug fixes and feature additions between these steps. So 
refactoring doesn't preclude changing functionality, it 
just says that it's a different activity from rearranging 
code. 

The key insight is that it's easier to rearrange the code 
correctly if you don't simultaneously try to change its 
functionality. The secondary insight is that it's easier to 
change functionality when you have clean (refactored) 
code. 



56

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 166

Papers and Web Sites

Bill Opdyke’s Thesis
Don’s Thesis
! http://st-www.cs.uiuc.edu/~droberts/thesis.pdf

Refactoring Browser
! http://st-www.cs.uiuc.edu/~brant/Refactory/RefactoringBrowser.html

Evolving Frameworks
! http://st-www.cs.uiuc.edu/~droberts/evolve.html

Extreme Programming
! http://www.c2.com/cgi-bin/wiki?ExtremeProgramming

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 167

More Web Sites

Wiki wiki web
! http://c2.com/cgi/wiki?WikiPagesAboutRefactoring

Refactoring Swiki
! http://brain.cs.uiuc.edu:8080/RefactoringBrowser

The Refactory, Inc.
! http://www.refactory.com

Martin Fowler’s Refactoring Pages
! http://www.refactoring.com/

Brazil  2003 -- Copyright 2003 by  Joseph W. Yoder Day 1 - 168

That’s All for Day 1


