Joseph W. Yoder

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The

Collaborators

Ralph Johnson johnson@cs.uiuc.edu

Quince Wilson gwilson@issintl.com

The Refactory, Inc. www.refactory.com

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 2

Goals

e Look at patterns for making objects
persistent in a non-object world

e Learn a framework for mapping your
objects to a relational database

e Take some sample code or ideas back with
you that you can use in your development
environment

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 3

Overview

Motivation & Problems
Patterns for Mapping Objects to RDBMS's
¢ How we Developed our Framework

The Design of our Framework
The Relational Database Side of Things
Meta-architecture for mapping objects to RDBMS's

e Summary

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 4

Motivation

Systems are often developed where
mappings to a relational database for
domain values are needed. Quite often
relational calculus and the maturity of
relational databases are exactly what one
needs. Other times it might be that the
corporate policy is to use a relational
database rather than an object-oriented
database.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 5

Problems with OO-RDBMS Mappings

¢ Impedance Mismatch of technologies

Objects - hierarchies, types, composition,
polymorphism, relate code and data

Relations - rows, tables, relational calculus
permanent storage, data access

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 6

Patterns for Making your Business Objects
Persistent in a Relational Database World

Page - 1



Joseph W. Yoder

Mapping Objects To RDBMS
Persistence Pattern Language

¢ Persistence Layer
e CRUD

¢ SQL Code

o Attribute Mapping Methads;

¢ Type Conversion

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

Mapping Objects To RDBMS
Persistence Pattern Language

¢ Changed Manager
¢ OID Manager

¢ Transaction Manager

¢ Connection Manager

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 8

The Patterns in Action

PersistedObject

-objectID
-owninglD
-isChanged

+save()
+delete()
+load()
+loadAll()
+loadAllLike()

PersistenceLayer

 Address

“name ~street

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

The Patterns in Action

Database Components

User

PersistedObject [ _Getsthe Table ] Tah|eManager
Broker Mappings From Th
TypeConverter |1Converts D8 and
Object Types | -objectlD

-isChanged s Gets the DB
-owningObject Connection From The

+delete() 1
+insert() ConnectionManager

+update()

+oadAll()
+loadAllLike() [ Generaesobios 1/ olp

ContactBroker AddressBroker

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 10

Persistence Layer

Problem:

How to make objects persistent to a non
object-oriented storage application such
as a relational database. This should be
accomplished in such a fashion as to
relieve the developers from having to
know the exact implementation.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

Persistence Layer

Solution:

Provide a Persistent Layer in which objects are
able to populate themselves from a data
storage source as well as save themselves
back to the data storage source. This is
really a special case of building a layer to
protect you from changes. It is similar to
Adapters and Facades. A standard interface
is provided in which all objects that need to
be persisted interface to.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 12

Patterns for Making your Business Objects
Persistent in a Relational Database World

Page - 2



Joseph W. Yoder

Persistence Layer

Discussion:

¢ Use a Layered Object. Subclass each domain
object from an abstract class PersistedObject.

¢ Provide a Broker that can read or write domain
objects to or from the database.

o Compose each domain object from a set of data
objects that have a one to one mapping to the
database tables.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 13

Persistence Layer

Using a Layered Object:
e Inherit behavior for persisting to database.

* QOverwrite methods for reading and writing
values to and from the database.

o Layer isolates developer from database details.
o Easy to Write SQL mapping
« Have to inherit from a PersistedObject

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 14

Persistence Layer

Using a Broker:

* Similar to a Layered Object in that you go
through a separate layer to persist your objects.

e SQL Code is kept separate from your domain.

¢ Can inherit from any object and still have a
persistent mapping.

o All SQL code is conglomerated together.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 15

Persistence Layer

Using Data Objects:

» Create a one-to-one mapping between tables in
the database and simple data objects.

¢ Create domain objects by using data objects.

» Simple and easy to map to...can easily map to
any database.

¢ Let data objects know when they are dirty and
save themselves when you commit.

¢ Have to handle complicated queries through
views or multiple data objects

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 16

Persistence Layer with Broker

Our Solution:

We create a Persisted object that any object that
we want to be persisted can inherit from. The
details of how the persistence is done is hidden
from the user. It also provides a place where
mapping to new types of persistence storage can
be created and integrated into the system without
affecting the application code. This persisted
object talks to a Broker object to separate the
details of the SQL from the domain object.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 17

Persisted Class Diagram

PersistedObject

-objectIlD
-owningID
-isChanged

+save()
+delete()
+load()
+loadAll()
+loadAllLike()

PersistencelLayer

1 h *)
= Adgre

name -street

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 18

Patterns for Making your Business Objects
Persistent in a Relational Database World

Page - 3



Joseph W. Yoder

Persisted Object with Broker

o Abstract class
¢ Standard Interface to Persistence Layer
e Supports General CRUD Operations

— (create, read, update, and delete)

» Broker Sub-Classes overwrite the specific
mappings to the database

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 19

Persisted Object (Java Class)

public abstract class PersistedObject extends
AbstractManager{

private double objectId;
private double ownerld;
private Timestamp lastChanged;
public abstract PersistedObjectBroker broker();

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 20

Persisted Object (Java Class)

public void setLastChanged(Timestamp newLastChanged) {
lastChanged = newLastChanged;}

public void setObjectld(double newObjectId) {
objectld = newObjectld;}

public void setOwnerId(double newOwnerld) {
ownerld = newOwnerId;}

public Timestamp getLastChanged() {
return lastChanged;}

public double getObjectId() {
return objectld;}

public double getOwnerId() {
return ownerld;}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 21

Persisted Object
(basic operations)

public boolean delete() throws SQLException {
return
broker().delete(broker().brokerFor(),((PersistedObject)this))); }
public boolean insert() throws SQLException {
return (broker().insert((PersistedObject)this)); }
public boolean update() throws SQLException {
return (broker().update((PersistedObject)this)); }
public boolean save() throws SQLException {
if (getObjectId() == 0){
return insert();
}else {
return update();};}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 22

Persisted Object
(reading objects)
public PersistedObject | oad(doubl e anObjectld)
throws SQLException {
if (anObjectld == 0){
return this;};
set Obj ect I d(anObj ectld);

ArraylList al =
(broker ().l oadAllLi ke((PersistedObject this));
Listlterator aList = al.listlterator();

Per si st edObj ect anCbject = null;
whil e (aList.hasNext()) {
anObj ect = (PersistedObject)aList.next();};
return anObj ect;}
public ArrayList loadAllLike() throws
SQLException { return
(broker ().l oadAllLi ke((PersistedObject)this));}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 23

Patterns for Making your Business Objects
Persistent in a Relational Database World

Persisted Object Broker

¢ Keeps The SQL Mappings and does all of the work
to interact with the database

* Persistent Objects define a subclass of the Broker
which defines the database mappings for that object

PersistedObjectBroker

+insert(PersistedObject)
+delete(PersistedObject)
+update(PersistedObject)
+loadAllLike(PersistedObject)

[c | \ |

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 24

Page - 4



Joseph W. Yoder

Persisted Object Broker

Keeps The SQL Mappings and does all of the
work to interact with the database

public abstract class PersistedObjectBroker
extends AbstractManager{

public boolean executeSqgl(Connection aConnection,
PreparedStatement aStatement) throws SQLException{

aStatement.execute();

aStatement.close();

aConnection.commit();
ConnectionManager.releaseConnection(aConnection);
return true;}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 25

CRUD (Create Read Update Delete)

Problem:

What minimal operations are needed for a
persistence object?

Solution :

Provide the basic CRUD (create, read, update,
and delete) operations for persistent objects.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 26

CRUD Example
(reading objects)

public String selectStatement(PersistedObject anObject) {
String sql;
sql = ("SELECT "
+ (TableManager.getQualifiedColumnsFor(brokerFor()))
+" FROM "
+ (TableManager.getQualifiedTableNameFor(brokerFor()))
FUAY;

return(sql + getWhereClause(anObject) + getOrderByClause());

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 27

CRUD Example
(deleting objects)

public boolean delete(String aBroker,PersistedObject aCode) throws
SQLException {
Connection aConnection = ConnectionManager.getConnection();
PreparedStatement aDelete =

aConnection.prepareStatement
(deleteStatement(aCode,aBroker));

executeSql(aConnection, aDelete);
return true;}

public String deleteStatement(PersistedObject aCode, String aBroker) {
String sql = ("DELETE FROM "
+ (TableManager.getQualifiedTableNameFor(aBroker))
+ " WHERE OBJECT_ID ="
+ TypeConverter.prepForSqgl(aCode.getObjectId()));
return(sql);}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 28

CRUD Example
(inserting and updating objects)

public boolean insert(PersistedObject aCode) throws SQLException {
Connection aConnection = ConnectionManager.getConnection();
PreparedStatement aStatement =
aConnection.prepareStatement
(insertStatement(aCode));
executeSql(aConnection, aStatement);
return true;}

public boolean update(PersistedObject aCode) throws SQLException {
Connection aConnection = ConnectionManager.getConnection();
PreparedStatement anUpdate =
aConnection.prepareStatement
(updateStatement(aCode));
executeSql(aConnection, anUpdate);
return true;}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 29

SQL Code

Problem:

How to maintain the consistency between the
values from objects and the persistent
storage? Where do you store the actual SQL
statement necessary to read and write to the
data source? How to provide a means where
by a embattled programmer is less likely to
forget to update a SQL statement when a
domain object is modified?

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 30

Patterns for Making your Business Objects
Persistent in a Relational Database World

Page - 5



Joseph W. Yoder

SQL Code

Solution :

Provide a place where the developer describes
the SQL Code for maintaining the consistency
between his object and the persistent
storage. Minimally, business objects need to
know how to perform CRUD operations
(create, read, update, and delete).

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

31

SQL Code (example)

SELECT * FROM t abl e_nane.

I NSERT | NTO tabl e_nanme ( col utm_nanes )
VALUES ( values ).

UPDATE t abl e_nane SET col umm_nanme = xyz
VWHERE key_val ue = soneKeyVal ue.

DELETE FROM t abl e_nane [whered ause].

If we use ODs, then Deletes are easy.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 32

SQL Code (PersitedBroker)

public String getWhereClause(PersistedObject anObject) {
String sql = " WHERE ";
if (!(anObject. getOb]ectId() =0)K
sql = sql + "A.OBJECT_ID =" +
TypeConverter.prepForSql(anObject.getObjectId());
return sql;}
if (!(anObject.getOwnerId() == 0)){
sql = sql + "A.OWNER_ID =" +
TypeConverter.prepForSql(anObject.getOwnerId());
return sql;}
return ""
public Strlng updateWhereClause(double anObjectld, Timestamp aDts) {
String whereClause =
", LAST_CHANGED = SYSDATE "
+ " WHERE OBJECT_ID ="
+ TypeConverter.prepForSql(anObjectId);
if (!(abDts == null)) {
whereClause =
whereClause + " AND LAST_CHANGED >=" +
TypeConverter.prepForSql(aDts); 5
return whereClause;}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

SQL Code (Address with Broker)

public class Address extends PersistedObject {
private String Street;
private String City;
private CodeValue State;
private String Province;
private CodeValue Country;
private String ZipCode;
public PersistedObjectBroker broker() {
return (PersistedObjectBroker) new
AddressBroker();}

public class AddressBroker extends
PersistedObjectBroker {

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 34

SQL Code (AddressBroker)

public String insertStatement(PersistedObject anObject) throws SQLException {|

assignKey(anObject);
Address anAddress = (Address)anObject;
String sql = ("INSERT INTO "
+ (TableManager.getQualifiedTableNameFor(brokerFor()))
e
+ (TableManager.getNonQualifiedColumnsFor(brokerFor()))
+ ") VALUES ("
+ TypeConverter prepForSql(anAddress.getObjectId())

+ TypeConverter prepForSql(anAddress.getOwnerld())

+ TypeConverter prepForSql(anAddress.getStreet())
+ "",' SYSDATE)");
return sql;}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

SQL Code (AddressBroker)

public String updateStatement(PersistedObject anObject) {
Address anAddress = (Address)anObject;
String sql = ("UPDATE "
+ (TableManager. getQuaI|f|edTabIeNameFor(brokerFor()))
+ " SET OWNER_ID =
+ TypeConverter.prepForSql(anAddress.getOwnerId())
+", STREET ="
+ TypeConverter.prepFoquI(anAddress.getStreet())
+", CITY =
+ TypeConverter prepForSql(anAddress.getCity())
", STATE =
+ TypeConverter.prepFoquI(anAddress.getState())

¥ updateWhereClause(anAddress.getObjectId(),

anAddress.getLastChanged()));
return(sql);}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 36

Patterns for Making your Business Objects

Persistent in a Relational Database World Page - 6



Joseph W. Yoder

Attribute Mapping Methods

Problem:

Where and how does the developer describe
the mappings between database values and
attributes? When values are brought in from
the database, it needs to be defined which
attributes the values are mapped to and
vice-versa.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

37

Attribute Mapping Methods

Solution :

For every domain object that needs to be
persistent, create a means to describe the
mappings between the database columns and
object attributes. In our case, we write a
method that describes the mappings from the
database values to the object’s attributes and
write a method which maps the values from
the object back to the database.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 38

Attribute Mapping Methods

Discussion :

The Persistence Layer will use this method to
take the returned values from the database
and stored them in the appropriate object
attribute. Similarly, when the persistent
object is being saved, the Persistent Layer
will use a similar method for taking values
from the object and putting them out to the
database.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

Attribute Mapping (Address)

public PersistedObject initializeFrom(java.sql.ResultSet aRow) throws

java.sql.SQLException {

Address anAddress = new Address();

anAddress.setObjectId(TypeConverter.convert
(aRow.getDouble("OBJECT_ID")));

anAddress.setOwnerId(TypeConverter.convert
(aRow.getDouble("OWNER_ID")));

anAddress.setStreet(TypeConverter.convert
(aRow.getString("STREET")));

anAddress.setCity(TypeConverter.convert(aRow.getString("CITY")));

anAddress.setZipCode(TypeConverter.convert
(aRow.getString("ZIPCODE")));
anAddress.setLastChanged(TypeConverter.convert
(aRow.getTimestamp("LAST_CHANGED")));
return (PersistedObject)anAddress;}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 40

Attribute Mapping (example)

public String insertStatement(PersistedObject anObject)
throws SQLException {
assignKey(anObject);
Address anAddress = (Address)anObject;
String sql = ("INSERT INTO "
+ (TableManager.getQualifiedTableNameFor(brokerFor()))
we

+ (TableManager.getNonQualifiedColumnsFor(brokerFor()))
+ ") VALUES ("

+ TypeConverter.prepForSql(anAddress.getObjectId())

+ T’ypeConverter.prepFoquI(anAddress.getOwnerId())

+ T’ypeConverter.prepFoquI(anAddress.getStreet())
+"N

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

Patterns for Making your Business Objects
Persistent in a Relational Database World

Type Conversion

Problem:

There is an impedance mismatch between RDB-
types & object-types. How do we take objects
that may not have a type in a database and
allow for them to map to a database type?
How do we ensure the data read from the data
source will work with our object? How do we
ensure the data written to the data source will
comply with the data source’s rules and
maintain data integrity?

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 42

Page - 7



Joseph W. Yoder

Type Conversion

Solution :

Have all values convert their respective types
through a Type Conversion object. This
object knows how to handle nils and other
mappings of objects to and from database
values. When objects are persisted from
large multi-application data source the data
formats can vary. This pattern ensures the
data retrieved from the data source is
appropriate for the object. This can also be a
Strategy for pluggable type converters

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 43

Type Conversion
(Java example)

public class TypeConverter extends AbstractManager{
public static boolean convert(boolean aBoolean){
return aBoolean;}
public static Date convert(java.sql.Date aDate){
return aDate;}
public static String convert(String aString){
if (@String == null ) { return null;}
return aString.trim();}
public static Timestamp convert(Timestamp aDts){

return aDts;}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 44

Type Conversion (example)

public static String prepForSgl(double aNumber) {
if (@aNumber == 0){
return "NULL" ;}
Double adouble = new Double(aNumber);
String sqlValue = adouble.toString();
return sqlValue;

}

public static String prepForSqgl(CodeValue aCode) {
if (aCode == null){
return "NULL"; }
String aValue =
Integer.toString(prepForSql(aCode.getCodeValue()));
return aValue;

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 45

Type Conversion (example)

public static String prepForSqgl(java.sql.Date aDate) {

if (aDate == null) {return null;}
String aString =
java.text.DateFormat.getDateInstance(1).format(aDate);
String sqlDate = "TO_DATE("

+ aString

+ ",'MONTH DD YY")";
return (sqlDate);}

public static String prepForSql(java.util.Date aDate) {

if (aDate == null) {return null;}
String aString =
java.text.DateFormat.getDatelInstance(1).format(aDate);
String sqlDate = "TO_DATE("

+ aString

+",'MM DD YYYY')";
return (sqlDate);}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 46

Changed Manager

Problem:

Many objects need access to shared values,
but the values are not unique throughout
the system. How to tell that an object has
changed and needs to be saved to the data
source? How to prevent unnecessary access
to the data source?

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 47

Changed Manager

Solution :

Create a means to keep track of what objects are
dirty so you can insure to save these changes
when desired. You can inherit from a Persistent
object, which has a dirty bit that gets set
whenever one of its attributes that maps to the
database is changed. This dirty bit is usually an
instance variable with a boolean value which
indicates when an objects values have changed.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 48

Patterns for Making your Business Objects
Persistent in a Relational Database World

Page - 8



Joseph W. Yoder

Changed Manager

Discussion :

When the boolean value is set the Persistent
object will save the new values to the data
source. If the boolean value is not set the
Persistent object will bypass the write to the
data source. Dependent upon the class
hierarchy the implementation can vary. One
solution is to modify the setter methods to set
the flag whenever an object’s values are
changed.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 49

Changed Manager

Other ways are to either keep the original
values and compare before the save,

Or, put the dirty objects into a bag and use
this to know which objects are dirty
when saving is needed.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 50

OID Manager (Key Manager)

Problem:

How do we insure that each object gets
stored uniquely in a database regardless
if it shares similar state with another
object or not?

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 51

OID Manager

Solution :

Provide a Object Identity Manager that creates
unigue keys for all objects that need to be
stored in the database. Insure that all newly
created objects that need to be persisted get
a unigue key. When a new object that needs
to be persisted is to be written to the data
source a unique identifier is generated. The
generation process needs to be quick and
ensure uniqueness.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 52

OID Manager

Discussion :

The OID Manager is usually an object that
Just encapsulates the key generation
algorithm. The OID Manager can use a
Strategy to generate its unique key.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 53

Transaction Manager

Problem:

How do we group together the saving of
multiple objects in such a way that if the
saving of one object fails, then we want
the other objects to not be saved?

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 54

Patterns for Making your Business Objects
Persistent in a Relational Database World

Page - 9



Joseph W. Yoder

Transaction Manager

Solution :

Build a Transaction Manager that works similar
to other transactions managers. This manager
allows for the beginning of transactions, the
ending of transactions, the committing of
transactions, and the rollback of transactions.
The transaction manager usually maps to the
RDBMS's transaction manager.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 55

Connection Manager

Problem:

How does the persistent manager keep track
of the database to connect to and what
user is currently connected?

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 56

Connection Manager

Solution :

Create a Connection Manager object, which
holds all of the values that need to be used
for the database connection. The common
values are usually the database session, the
current user logged into the system, and any
other global information used for auditing,
transactions, and the like.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 57

Connection Manager

Discussion :

The Connection Manager establishes the
connections to the databases. A Strategy
can be used for deciding which connection
is needed if multiple database servers are
being used. The Connection Manager can
use a Session.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 58

Connection Manager (example)

public class ConnectionManager
extends AbstractManager{

private static java.sql.Connection activeConnection;

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 59

Connection Manager (example)

private static java.sqgl.Connection
getActiveConnection() {

return activeConnection;}

public static void closeConnection(Connection
aConnection) throws java.sql.SQLException {

aConnection.commit();
aConnection.close();
setActiveConnection(null);}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 60

Patterns for Making your Business Objects
Persistent in a Relational Database World

Page - 10




Joseph W. Yoder

Connection Manager (example)

public synchronized static Connection getConnection()
throws SQLException {

if (getActiveConnection() != null){
return getActiveConnection();}

DriverManager.registerDriver(new
oracle.jdbc.driver.OracleDriver());

// DriverManager.registerDriver (new
sun.jdbc.odbc.JdbcOdbcDriver());

Connection aConnection =
DriverManager.getConnection(
1l "jdbc:oracle:thin:" + getServerSpecs() +

aConnection.setAutoCommit(false);
setActiveConnection(aConnection);
return aConnection;}

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 61

Connection Manager (example)

private static String getServerSpecs() {

String serverSpecs = new String();

try { FileReader fileInStream;
BufferedReader dataInStream;
String configFile = System.getProperty("SFPS_DB_CONFIG_FILE");
System.out.printin("configfile: " +configFile);
if(configFile == null)
{configFile = "/export/home/sfps.init";}
fileInStream = new FileReader(configFile);
datalnStream = new BufferedReader(fileInStream);
serverSpecs = dataInStream.readLine();
fileInStream.close();
datalnStream.close();}...

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 62

Connection Manager (example)

...catch (FileNotFoundException noFile)
{System.out.printin("Database server spec. file ("
+ noFile.getMessage() + ") not found, using defaults.");
//Defaults
/! serverSpecs ="@192.168.100.200:1521";
serverSpecs = "@192.168.100.200:1521" + ":sfps1";
!/ serverSpecs = "@ISS7M52501:1521";
} catch (IOException notReadable)
{System.out.printin("Database server spec. file ("
+ notReadable.getMessage() + ") could not be read, using defaults.");
//Defaults
serverSpecs ="@192.168.100.200:1521" + ":sfps1";
/| serverSpecs = "@ISS7M52501:1521";}

return serverSpecs;}
Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 63

Mapping Objects To RDBMS
Persistence Pattern Language

¢ Persistence Layer
CRUD

SQL Code
Attribute Mapping Methagds;

Type Conversion

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 64

Mapping Objects To RDBMS
Persistence Pattern Language

¢ Changed Manager
¢ OID Manager
¢ Transaction Manager

¢ Connection Manager

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 65

Summary of Architecture

¢ Subclass from PersistedObject and
Subclass from PersistedBroker

e Overwrite:
— TableName
— Initialize Method
— Create, Update, Read

e Much simpler and easier to
understand and maintain

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 66

Patterns for Making your Business Objects
Persistent in a Relational Database World

Page - 11



Joseph W. Yoder

Mapping Objects
(the relational side)

Object Identification
— uniquely generated
—“"HIGH/LOW OID"” presented in [Ambler98].

Classes to Tables [Brown Whitenack 96].

Handling Related Objects
— owned objects

— knowledge relationships

— many-to-many

Optimizations (denormalization)

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 67

One Table for
each Concrete Class

PersistentObject

oid anEmployee
position = ‘time leader’
A project = #Y2K
7 Oid = 'EMP123456'
RowLastChange = aTimeStamp
[name ]

A

Employee

position
projec
a) Object Model b) Instance Diagram
[feid TownerGid_| rowLastChange] name [position Tproect ]
I I I I I |
’@w F] | aTmeStarmp | David Robin' | e leader | #v2K |
I I I I I 1
Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 68

Owned Objects

O = ALPIZ3755"
RowLasiChange = aTimesiami1
name = Manue Perez
AlienPerson originalCountry = ‘England’
.

rowLastChange

originalCountry
ss#

SocSechum

‘anSocSecNum

rowLastChange|
Pumber RowLastChange = aTimeStamyl2
isPermanent omber = '331-92-3040
variables = false

a) Obiect Model b) Instance Diagram
[ Towneroid | rowLastChange[ name I [Country |
I | I I
ALP123456 | null aTimeStampl | Manuel Perez | England’
[[oid JLowner0id } LastCh: [variableT [variableS }
SSN987654 ALP123456 } } '331-92-3040" }!a\se }
Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 69

Knowledge Relationships

Address

TowLastChange

street
geoLoc od
rowLastChange|
city
state
[oid [ownerOid_| rowLastChange | city. [ state |
) Object Model
GEO123456|
[oid [ownerOid_| geoLocOid | rowLastChange[ number | street |

ADROB7654 GEO123456| aTimeStamp? | 1234 | Race |
ADROBT6TT GEO123456] aTimeStamp3 | 9087

b) Instance Diagram

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 70

Many to Many Relationships

[feid }awnelom rowLasiChange }name Iphone ]

Patient PAT123456 | null aTimeStampl | Sean Greer | (123)-222-3333
Doctor
rowLastChange oid
name rowLastChange
n
phone ame [oid T ownerold [ rowLasichange [ name |
doctors 0P

DOCO8765: | nul | aTmeSiamp2 | Bl Brown

) Object Model

aPatient

0Oid = 'PAT123456'

[RowLastChange = aTi
hame = ‘Sean Green’
phone = ‘(123)-222-3333'
doctors = aCollection} } (aDactar

¢ Most of the time the only difference between

¢ When creating CRUD there are many places

Oid = 'DOC987654'
[RowLastChange = aTi
hame = Bill Brown’

patients = aCollection®{ }

b) Instance Diagra

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 71

[oid TtablelOID [table20ID | table1ClassType | table2ClassType | rowLastChangec
r_—r T T 1T 7
DOCOBT65 | PAT123456 TimeStampl

e Can use a specification to parameterize the

Mapping Objects (meta-architecture)

the SQL generated is the table names, column
names, and the rdb-types, attribute names,
object-types

where the code looks very similar

differences between objects

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 72

Patterns for Making your Business Objects
Persistent in a Relational Database World

Page - 12



Joseph W. Yoder

SQL Code (example)

SELECT * FROM t abl e_nane.

I NSERT | NTO t abl e_name ( col unm_nanes )
VALUES ( val ues ).

UPDATE t abl e_nane SET col umm_nane = xyz
WHERE key_val ue = soneKeyVal ue.

DELETE FROM t abl e_nane [whered ause] .

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 73

Mapping Objects (meta-architecture)

NappedPersistentObject

uses

-

e

=)

1

DomainSubClass
RDBTableSpecification AvibueSpeciication eample
“ableName: suing prr——
suing

+addColummSpecs(): ARDBColm”Spec

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 74

Mapping Objects (meta-architecture)

RDBTableSpedification

“ableNam

JumnName)
50: aRDBColumnSpec.

“column:
+addColumnSpec:

1

4‘ 1

~iableSpeckor(ableName)

+createRDBSpec)

[ ]

“assaL
i
[romoman | [ cooonne ] [ rwsomnne ]
RoBCharacerType RDBENcodedPasswordType

[Cromoomm | [ vwcraiee |
Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 75

Attribute Map Specification

» Specification for the attribute map needs
— Table Name(s)
— Attribute Names
— Column Names
— RDB Types with Parameters
— Type of Relationship

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 76

Attribute Mapping Example

MappedPersistentObjec

o
rowLastChange

Class Diagram

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 77

Patterns for Making your Business Objects
Persistent in a Relational Database World

Attribute Map Example
(PATIENT_T

(name NAM_STR (RDBVarChar 20) (simple string))
(address Address (RDBObjectId) owned)

(phone PHONE_STR (RDBVarChar 10) (simple string))
(doctors Doctor (RDBManyType) many)

(insurance Insurance (RDBKnowledgeType INS_OID)
knowledge))

This spec could be XML or whatever...it is used to generate the SQL
Code anytime a CRUD operation is executed

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 78

Page - 13




Joseph W. Yoder

Meta-Architecture

‘ ‘Dalabase

u%
PersistedObject L MappedPersistant |-
. 1 Ot

e o e o[ TableManager ‘
-objectID Tappings From Th
-owningID
-isChanged e
oavel +delete() - e
“delete) +insert() 1
TioadAlg +oadAll()
h loadAllLiks + cenersies onips
load AllL ike() HoadAllLike) e ‘
PersistenceLayer
Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 79

Query Objects
Making Objects to deal with Queries

By: John Brant and Joseph Yoder

Published in PLoPD4 Book

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

80

Query Objects (Hot Spots)

» Find aspects that change, and make them
objects

¢ Often are patterns from Design Patterns:
Elements of Reusable Object-Oriented Software

e QueryObjects: Interpreter pattern

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 81

Typical Values in a Report

Sales Report

vatger| s | varare °

‘Thousands of Dollars @ @

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

82

Query Objects
Business logic is equations expressed with Values
as Mathematical functions and Queries
¢ Values = functions of other values
¢ Values = queries from the database
variable margin = net sales - variable cost

net sales = gross sales - warrantee

gross sales = sum sales column from
sales_and_transfer table

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 83

Interpreter Pattern

¢ Need to represent SQL to manipulate
query:
SELECT SUM(sales) FROM sales_and_transfer

WHERE family="MWL’ AND date > ‘1/1/96" AND
date < '1/1/97'

e Problem: how do you represent a simple
language?

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc.

Patterns for Making your Business Objects
Persistent in a Relational Database World

Page - 14



Joseph W. Yoder

Interpreter Pattern

1) make a class hierarchy that represents
nodes in abstract syntax tree
(SELECT, AND, <, tables, field names)

2) define methods to construct and
manipulate tree

3) define method to compute value of query
(this is the “interpreter”)

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 85

Instance Hierarchy

SELECT SUM(sales) FROM sales_and_transfer
WHERE family="MWL’ AND date > ‘1/1/96" AND date< ‘11/97’

ProjectQuery—— SelectQuery—— TableQuery
l #sales_and_transfer
MessageQE MessageQE

R,
FieldQE () .~ (AND) — (5)

“sales” ValueQE
} \ N\ MWL’
ValueQE FieldQE ValueQE
‘1/1/97’ “date” ‘1/1/96’

FieldQE
“family”

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 86

QueryObijects
QueryObject
TableQuery QueryExpression
JoinQuery ValueQE
WrapperQuery MessageQE
RenamingQuery FieldQE
ExpressionQuery RenamedFieldQE
SelectQuery
ProjectQuery
OrderQuery

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 87

QueryObject Protocol

» values - answer collection of tuples
o fieldNames

* join: aQueryObject

¢ select: aQueryExpression

¢ project:, renameColumnsTo:, outerJoin:,
groupBy:, orderBy:, asDistinct

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 88

Creating a QueryObiject

salesQ := #sales_and_transfer asQuery.
dateQ := salesQ select:
((salesQ @@ ‘family’) = '"MWL") &
((salesQ @@ ‘date’) > ‘1/1/96") &
((salesQ @@ ‘date’) < *1/1/97").
dateQ project: (dateQ @@ ‘sales’) Sum

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 89

QueryExpression Protocol
+, -, <, =, &, |, Sum, Average, Count, ...

Sending one of these messages to a
QueryExpression builds a MessageQE
with the appropriate operands, and with
the message as the operator.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 90

Patterns for Making your Business Objects
Persistent in a Relational Database World Page - 15



Joseph W. Yoder

Observer and QueryObjects

Let ValueQE refer to a ValueModel.
Let each QueryObject observe its components.

ProjectQuery—— SelectQuery—— TableQuery
#sales_and_transfer

MessageQE MessageQE
(SllJM) (ATD) T~ (=) FieldQE
FieldQE () (AND) — () “family”

“sales” \ / \ ValueQE
| ‘MWL
ValueQE FieldQE ValueQE

Summary

¢ A Persistent Layer helps hide database
technology details from the application
developer and makes it easier to change
persistent storage technologies without
affecting the application code.

¢ Brokers are useful for separating SQL
details from domain objects.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 92

‘1/1/96'  “date” ‘1/1/97°
Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 91
Summary

» Patterns are good for documenting a
framework and for describing how to
build a similar framework.

¢ This pattern language follows what one
needs to do when dealing with persisting
objects in a non-object world.

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 93

Related Links

« The following link discusses the details of the framework
http://www.joeyoder.com/Research/objectmappings

e Generic Lightweight Object-Relational Persistence (GLORP)
http://www.glorp.org/

e Joe's Patterns Paper
http://www.joeyoder.com/papers/patterns

* The reporting patterns describing query-objects - PLoP '96
http://www.joeyoder.com/papers/patterns/Reports/

e Evolving Frameworks - PLoP '97
http://st-www.cs.uiuc.edu/users/droberts/evolve.html

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 94

Related Links

e Security Patterns describing Sessions - PLoP 97
http://www.joeyoder.com/papers/patterns/

e Crossing Chasms
http://www.ksccary.com/ordbjrnl.htm

¢ Mapping Object to Relational Databases
http:// www.ambysoft.com/mappingObjects.pdf

* Relational Database Access Layers
http://www.sdm.de/g/arcus/cookbook/relzs/

* Metadata and Adaptive Object-Models
http://www.adaptiveobjectmodel.com

e HOP: Persistency Framework
http://www.elevensoft.it/hoop

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 95

That's All

Copyright, 1999-2004 © Joseph W. Yoder Enterprises, Inc. & The Refactory, Inc. 96

Patterns for Making your Business Objects
Persistent in a Relational Database World Page - 16



