
Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 1

Architectural Patterns for Architectural Patterns for
Enabling Application SecurityEnabling Application Security

Joseph W. Yoder

The Refactory, Inc.
University of Illinois

yoder@refactory.com

http://www.joeyoder.com

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 22

Presenter

Joseph Yoder

� e-mail: yoder@refactory.com

� www: http://www.joeyoder.com

� www.refactory.com

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 33

Security Collaborators

Jeffrey Barcalow

Eduardo Fernandez

Peter Sommerlad

Quince Wilson

Others…

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 44

Table of Contents

Overview

Motivation – a few examples
� General Problem

� General Solution

Architectural Elements of Security

A Description of the Patterns in Action

Implementation Issues

Putting it All Together

Summary and Questions

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 2

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 55

What are we doing?

Describing common Architectures for
Application Security

Going to describe them with patterns

We will look at a set of Patterns that
work together to solve issues raised
while implementing application security

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 66

Security Problems

Adding application security late in the
development cycle can be a very difficult
task.

Sometimes it may even require large
pieces of the system to be completely
refactored or rewritten.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 77

Context of the Style

Systems are often developed without security in
mind. This omission is primarily because the
application programmer is focusing on trying to learn
the domain rather than how to protect the system.

The developer is building prototypes and learning
what is needed to satisfy the needs of the users.

In these cases, security is usually the last thing he or
she needs or wants to worry about. When the time
arrives to deploy these systems, it quickly becomes
apparent that adding security is much harder than
just adding a password protected login screen.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 88

Forces – Security Patterns

Application programmers usually start out focusing
more on trying to learn the domain rather than
worrying about how to protect the system.

It is sometimes easier and better to show quick
progress to the user, thus we get to get to get
feedback and user validation (i.e. XP process).

On the other hand, application security is an
important issue and addressing it later phases of
the development lifecycle can make it hard to
retrofit into the architecture.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 3

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 99

Security Issues

In corporate environments where security
is a priority, detailed security documents
are written describing physical, operating
system, network, and application security.

These documents deal with issues such as
user privileges, how secure passwords
have to be and how often they might need
to be changed, whether or not data needs
to be encrypted, how secure the
communication layer needs to be, etc.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 1010

Integrating application security with low level security.Secure Access Layer

Allowing users to only see what they have access to.Limited View

Provide a full view to users, showing exceptions when needed.Full View With Errors

Localizing global information in a multi-user environment.Session

Organizing users with similar security privileges.Roles

Organizing security checks and their repercussions.Check Point

Providing a security module and a way to log into the system.Single Access Point

IntentPattern Name

Security Patterns Catalogue

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 1111

Single Access Point

Also known as:

� Login Window

� One Way In

� Guard Door

� Validation Screen

Security is easier to guarantee and
implement when there is only a single
place to gain entry into the system

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 1212

Single Access Point (context)

Need to provide external access to a system,
and want to protect it from misuse, damage,
or unauthorized access.

Define a single access point that grants or
denies entrance to the system after checking
the entity requiring access.

The single access point is easy to implement,
defines a clear entry point to the system and
can be easily assessed for implementing the
desired security policy.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 4

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 1313

Single Access Point
Problem:

A security model is difficult to validate when it has multiple “front
doors,” “back doors,” and “side doors” for entering the application.

Forces:
� Having multiple ways to open an application makes it easier to use

in different environments.
� An application may be a composite of several applications that all

need to be secure.
� Different login windows or procedures could have duplicate code.
� A single entry point may need to collect all of the user information

that is needed for the entire application.
� Multiple entry points to an application can be customized to collect

only the information needed at that entry point. This way, a user
does not have to enter unnecessary information.

Solution:
Set up only one way to get into the system, and if necessary, create
a mechanism for deciding which sub-applications to launch.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 1414

Single Access Point

Defines clear entry point to the system.

Provides external access to a system.

Helps protect system from misuse or damage.

Defines a single access point that grants or
denies entrance to the system.

Checks the entity requiring access.

Used for setting up and implementing the
desired security policy.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 1515

Single Access Point: CRC

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 1616

Single Access Point: Scenario

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 5

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 1717

Single Access Point:
Implementation Issues

Define your security policy for the system.

Define a place for the Single Access Point.

Implement the entry check at the Single
Access Point.

Implement the system initialization at the
Single Access Point.

Protect the boundary of your system.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 1818

Single Access Point:
Positive Consequences

Single Access Point provides a place to properly
setup security within the application.

Control flow can be simpler since everything
must go through a single point of responsibility.

A single place to check for vulnerabilities.

Inner structure of system is simpler, because
repeated authorization checks are avoided.

No redundant authorization checks. The entity is
trusted once it passes through the access point.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 1919

Single Access Point:
Negative Consequences

Application cannot have multiple entry points to
make entering an application more flexible.

Can be difficult to incorporate different types of
entry (different info) into single point of access.

In a complex system several Single Access
Points of subsystems might be required.

Single Access Point may make the system
cumbersome to use or completely unusable.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 2020

Single Access Point:
Related Patterns

Validates the user’s login information
through a Check Point and uses that
information to initialize the user’s
Roles and Security Session.

A Singleton [GHJV 95] could be used for
the login class and a Singleton could also
be used to keep track of the Sessions.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 6

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 2121

Single Access Point:
Known Uses

Many- Most Operating Systems such as
MacOS, Microsoft Windows or UNIX,
require a user to log into the system

Firewalls and Protection Proxies use
Single Access Point.

Most application login screens are a
Single Access Point as they are the only
way to startup and run the application.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 2222

Check Point

Also known as:
� Access Verification

� Authentication and Authorization

� Holding off hackers

� Validation and Penalization

� Make the Punishment Fit the Crime

It is important to only allow authorized
users to perform their allowed actions.
Penalize and block inappropriate actions.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 2323

Check Point (context)
Application security allows occasional mistakes
while doing its best to keep a hacker out.

A developer could design many checks to
determine if a user is trying to break into the
system or is just making common mistakes.

Checks could become complicated and could
be spread out throughout the application,
making it difficult to manage and maintain.

Check Point addresses this problem by
organizing these checks.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 2424

Check Point
Problem:

An application needs to be secure from break-in attempts, and
appropriate actions should be taken when such attempts occur.
Different organizations have different security policies and there needs
to be a way to incorporate these policies into the system independently
from the design of the application.

Forces:
� Having a way to authenticate users and provide validation on what they can

do is important.
� Users make mistakes and should not be punished too harshly for mistakes.
� If too many mistakes are made, some type of action needs to be taken.
� Different actions need to be taken depending on the severity of the

mistake.
� When error-checking code spread over an application, it is difficult to debug

and maintain.

Solution:
Create an object that encapsulates the algorithm for the company’s
security policy.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 7

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 2525

Check Point

Defines clear entry point to the system

Provide external access to a system

Need to protect system from misuse or
damage

Define a single access point that grants
or denies entrance to the system

First checks the entity requiring access

Used for setting up and implementing
the desired security policy

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 2626

Check Point: Example

Halt

Login window

Password
Check

Increase current fail count
Increase user fail count
Increase machine fail cnt.

* These other checks could include: Is the machine legal? Is the machine disabled? Is
user’s account disabled? Does user have valid role? Has the user’s password
expired? These other checks are related to the companies security policy.

Too many
 failures?

Clear failures

Load session data
based on role

Disable
Other Checks

*

Ok Problem

Y

N

Ok

Problem

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 2727

Check Point:
Implementation Issues

Pattern is separated into two conceptual
parts: Authentication and Authorization.
� Authentication verifies who and where a user is.

� Authorization involves checking the privileges of an

authenticated user.

Check Point utilizes the user’s Role to
provide the authorization to the system.

Check Point can be an Achilles’ Heel of an
application’s security, so every branch in
the logic must be carefully checked.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 2828

Check Point:
Positive Consequences

Check Point is a critical location where
security must be absolutely enforced.
Check Point localizes the security model
that needs to be certified.

Check Point can be a complex algorithm.
While this complexity may be unavoidable,
it is isolated in one location, making the
security algorithm easier to change.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 8

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 2929

Check Point:
Negative Consequences

Some security checks might not be able to
be done at startup, so Check Point must
have a secondary interface for parts of the
application which need those checks.

Some information needed for further
security checks must be kept until needed.
This information could include username,
password, and Roles, (store in a Session).

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 3030

Check Point:
Related Patterns

The Check Point algorithm can be a Strategy.

Single Access Point is used to insure that
Check Point gets initialized correctly and that
no security checks are skipped.

Roles are used for Check Point’s security
checks and initialized by Check Point.

Check Point configures a Session and stores
the necessary security information.

Check Point uses the Secure Access Layer to
interface with external security systems.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 3131

Check Point:
Known Uses

Most Operating Systems have Check Points
for accessing files and running programs
(used with ACLs).

The login process for an ftp server uses
Check Point. Depending on the server’s
configuration files, anonymous logins may or
may not be allowed. For anonymous logins,
a valid email is sometimes required.

Most applications use Check Point as users’

access different parts of the system.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 3232

Roles

Also known as:

� Actors

� Groups

� Projects

Organizing groups of users by actions they
are allowed to perform.

�Profiles

�Jobs

�User Types

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 9

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 3333

Roles (context)
Security can be complicated in multi-user
applications with different privileges.
Users have different areas of the application
that they can see, can change, and “own.”
When the number of users is large, the
security permissions for users often fall into
several categories such as a user’s job titles,
experience, or division.
An administrator needs an easier way to
manage permissions and the security profiles
for a large number of users.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 3434

Roles
Problem:

Users have different security profiles, and some profiles are similar. If
the user base is large enough or the security profiles are complex
enough, then managing user-privilege relationships can become
difficult.

Forces:
� With a large number of users it is hard to customize security for each

person.
� Groups of users usually share similar security profiles.
� A user may need to have an individual security profile.
� Security profiles may overlap.
� A user’s security profile may change over time.

Solution:
Create one or more role objects that define the permissions and
access rights that groups of users have.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 3535

Roles

This pattern introduces a level of indirection
(called the Role).

This level of indirection splits the user-
privilege relationship into user-role and
role-privilege relationships.

While these two new relationships are still
M-to-N, selecting appropriate Roles can
reduce the total number of relationships.

The benefit is that privileges can usually be
grouped together into common categories.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 3636

Roles: Example

PrivilegeUser

User-Privilege Relationship

Role PrivilegeUser

User-Role-Privilege Relationship

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 10

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 3737

Roles:
Implementation Issues

Introducing Roles creates two new relationships that
must be managed: user-role and role-privilege.

� These new relationships can help make managing security
easier. When the privileges of a job title change, that role-
privilege relationship can be edited directly.

Sometimes, a subset of the original user-privilege
relationship must also be maintained to allow each user
to have private privileges.

� The easiest way to do this is to give each user an independent
role, which happens to be the same as their username. Roles
should only be used when the extra level of indirection provides
a conceptual or manageability advantage over the direct user-
privilege relationship.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 3838

Roles:
Positive Consequences

Instead of managing user-privilege relationships, the
administrator will manage the user-role and role-privilege
relationships.
Roles can be a convenient organizational technique for
administrators.
Roles are a good way to group together common
privileges.
Administrative tasks can be simplified by using Roles.
For example, all new employees could be allowed to view
and edit a training database, but only view the real
database. A “training” Role could be created for these
permissions. Then, any new employee account will only
have to be given a training Role instead of a potentially
large set of permission options.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 3939

Roles:
Negative Consequences

Roles add an extra layer of complexity for
developers.

Even if Roles are used, each user will need
a private Role to maintain private
privileges and preferences.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 4040

Roles:
Related Patterns

Dealing with Roles [Fowler 97] and the Role Object
Pattern the provides discusses roles with specific
implementation details.

Check Point used validation Roles with the proper
permissions.

The Role information can be stored in a Session object
for access whenever needed.

Roles could be used to determine the scope of a
Limited View or a Full View with Errors.

When an application should behave differently
depending on a user’s job, the user’s Roles could be
a Strategy for the application.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 11

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 4141

Roles:
Known Uses

UNIX uses three classifications for secure access to files and
directories. The middle classification is “group,” which is an
example of Roles. The user-role relationship is stored in
/etc/group and is sorted by Roles. The file system stores the
role-privilege relationship and uses ACLs.

Windows NT allows for descriptions of groups for allocating
privileges for users in a similar way.

Some web servers use .htaccess and .htgroups files which define
groups of users (Roles) that can access certain areas of a web
site.

Oracle has a Roles feature for defining security privileges. User-
role and role-privilege relationships are stored in tables.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 4242

Roles:
More Known Uses

In the GemStone OODB data is stored in a segment. GemStone
treats segments analogously to the way UNIX treats files. Users
in GemStone can have one or more groups (Roles), and each
segment has read and write privileges defined for all users, for a
set of groups, and for the owner. Since a segment can have a
set of groups, it is a little more powerful than UNIX with respect
to groups.

The PLoP ’98 registration program [Yoder & Manolescu 98] has
two Roles: attendee and administrator.

Java’s Principal object can be to store Roles which are just
strings. The Access API for Reuters SSL Developers Kit - Java
Edition has an Attribute class which is analogous to Java’s
Principal.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 4343

Security Session

Also known as:
� User’s Environment

� Namespace

� Threaded-based Singleton

� Localized Globals

Secure applications need to keep track
of information used throughout the
application such as username, roles,
and their respective privileges.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 4444

Session (context)
Secure applications need to keep track of information
used throughout the application such as username,
roles, and their respective privileges.
Usually the Singleton pattern [GHJV 95] is used to
store global information in a static or class variable.
Singleton can be difficult to use when an application is
multi-threaded, multi-user, or distributed.
Each thread or each distributed process can be viewed
as an independent application, each needing its own
private Singleton.
When the applications share a common global address
space, the single global Singleton cannot be shared.
Thread safe “Singletons”.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 12

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 4545

Session
Problem:

Many objects need access to shared values, but the values are not
unique throughout the system.

Forces:
� Referencing global variables can keep code clean and straightforward.
� Each object may only need access to some of the shared values.
� Values that are shared could change over time.
� Multiple applications that run simultaneously might not share the same

values.
� Passing many shared objects throughout the application make APIs more

complicated.
� While an object may not need certain values, it may later change to need

those values.

Solution:
Create a Session object, which holds all of the variables that need to be
shared by many objects. Each Session object defines a namespace,
and each variable in a single Session shares the same namespace. The
Session object is passed around to objects which need any of its
values.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 4646

Session
Verification of a users identity and access
rights for every system function can be
tedious. To not annoy users by re-requesting
authentication information over and over
systems establish a Security Session for
keeping track of who is using them and what
the corresponding access rights are.
Instead of passing all information around,
only a unique reference to the session object
is passed and all queries regarding a user's
security properties are delegated to the
attached session object.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 4747

Session: CRC

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 4848

Session: Structure

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 13

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 4949

Session: Dynamics

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 5050

Session:
Positive Consequences

The Session object provides a common interface
for all components to access important variables.
Instead of passing many values around the
application separately, a single Session object
can be passed around.
Whenever a new shared variable or object is
needed, it can be put in the Session object, and
then all components that have access to the
object will have access to it.
Change propagation is simplified because each
object in a thread or process is dependent on
only a single, shared Session object.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 5151

Session:
Negative Consequences

While an object may not need a Session, it may later
create an object that needs the Session.

Potential proliferation of Session instance variables.

Adding Session late in the development process can be
difficult. The authors have experience retrofitting Session
and can attest that this can very tedious when Singletons
are spread among several classes.

When many values are stored in the Session, it will need
some organizational structure. While some organization
may make it possible to breakdown a Session to reduce
coupling, splitting the session requires a detailed analysis.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 5252

Session:
Related Patterns

Session is an alternative to a Singleton in a
multi-threaded, multi-user, or distributed
environment.

Single Access Point validates a user through
Check Point. It gets a Session in return if the
user validation is acceptable.

A Session is a convenient place to implement
the State pattern when the state is needed
throughout the application.

A Session can keep track of the users Role and
possibly cache Limited View data.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 14

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 5353

Session:
More Related Patterns

Abstract Session [Pryce 97] is a related pattern. While
Abstract Session concentrates on network session, this
pattern concentrates on where data is stored. In a
networking environment, both patterns are typically
seen and a could be implemented together.

The Thread Specific Storage Pattern [Schmidt, Pryce,
& Harrison 97] allows multiple threads to use one
logically global access point to retrieve thread-specific
data without incurring locking overhead.

Double-Checked Locking [Schmidt & Harrison 97] is
the Singleton replacement when dealing with
multitasking or parallelism.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 5454

Session:
Known Uses

For VisualWorks, GemBuilder for GemStone and the ObjectLens
framework for Oracle have GbsSession and OracleSession classes,
respectively. Each stores information such as the transaction state and
the database connection. These Sessions are then referenced by any
object within the same database context.

The PLoP ’98 registration program [Yoder & Manolescu 98] has a
Session object that keeps track of the user’s global information.

Most databases use a Session for keeping track of user information.

VisualWave uses a Session for its httpd service, which keeps track of
any web requests made to it.

UNIX ftp and telnet services use a Session for tracking requests and
restricting user actions.

The open sourced implementation of SSL (secure sockets layer)
openSSL uses a session id, to avoid re-negotiating certificates and
encryption algorithm and session key for connections re-established

between the same client and server.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 5555

Full View With Errors

Also known as:
� Full Access With Errors

� Full Access with Exceptions

� Reveal All and Handle Exceptions

� Notified View

Provides a view of the maximal
functionality of the system and
gives the user an error when not
entitled to use a presented function.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 5656

Full View With Errors (context)

Graphical applications often provide
many ways to view data.

Users can dynamically choose which
view on which data they want.

When an application has multiple views,
the developer needs to be concerned
with which operations are legal given
the current state of the application and
the privileges of the user.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 15

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 5757

Full View With Errors
Problem:

Users should not be allowed to perform illegal operations.
Forces:

� Users may be confused when some options are either not
present or disabled.

� If options pop in and out depending upon Roles, the user may
get confused on what is available.

� Users should not be able to see operations they are not allowed
to do.

� Users should not view data they do not have permissions for.
� Users do not like being told what they cannot do.
� Users get annoyed with permission denied messages and illegal

operation errors.

Solution:
Design the application so users see everything that they
might have access to. When a user tries to perform an
operation, check if it is valid. Notify them with an error
message when they perform illegal operations.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 5858

Full View With Errors

Defines clear entry point to the system.

Provides external access to a system.

Helps protect system from misuse or damage.

Defines a single access point that grants or
denies entrance to the system.

Checks the entity requiring access.

Used for setting up and implementing the
desired security policy.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 5959

Full View With Errors: CRC (1)

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 6060

Full View With Errors: CRC (2)

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 16

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 6161

Full View With Errors: Structure

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 6262

Full View With Errors: Scenario

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 6363

Full View With Errors:
Implementation Issues

To implement Full Access with Errors several
tasks need to be done:

� User log in - refer to CheckPoint and Security Session,
obtain access rights, Interface design, etc.

Implement association of access rights with
user. The patterns CheckPoint and Security
Session are typical means to provide a user log
in and attach his access rights.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 6464

Full View With Errors:
More Implementation Issues

Design the interface representing the full set of
the system’s functionality. visual hints for users
(requires registration), grouping, etc.

Provide access to user's access rights check for
system's functions. Check Point again.

Define and implement the trust relationship
within the system by the Session concept.

Some more…

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 17

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 6565

Full View With Errors:
Positive Consequences

A system can be effectively secured, since before
each individual operation is executed a user's
permissions for this operation are checked.

All possible functions are visible to a user,
providing not only a consistent interface but also
demonstrate all available features, even when
the user is not (yet) privileged to use them.

It is easy to change access rights and groups for
such a system without influencing the concrete
implementation of the system or its interface.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 6666

Full View With Errors:
More Positive Consequences

Retro-fitting this pattern into an existing system is
straight forward: Write an interface that will handle all
possible functions and whenever a problem happens with
an operation simply abort the operation and display an
error message.
Documentation and training material for an application
can be consistent for each type of user.
Full Access with Errors fits well in situations, where users
can upgrade their privileges for a otherwise unavailable
operation on the fly, e.g. by confirming a dialogue,
without breaking their flow of work.
For web applications applying the pattern allows stable
URLs and links to a download area, even in the case a
user must register first. A pre-registered user will be able
to directly download using the same URL.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 6767

Full View With Errors:
Negative Consequences

Users may get confused with a constant
barrage of error dialogs.

Operation validation can be more difficult
when users can perform any operation.

Users will get frustrated when they see
options that they cannot perform.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 6868

Full View With Errors:
Related Patterns

Limited View is a competitor to this pattern. If
limiting the view completely is not possible,
this pattern can fill in the holes.

Checks [Cunningham 95] describes many
details on implementing GUI’s and where to
put the error notifications.

Roles will be used for the error notification or
validating what the user can and can not do.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 18

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 6969

Full View With Errors:
Known Uses

Under the UNIX shell you can activate almost any
program on any file in the file system. However, when
your access rights are insufficient for accessing files,
you get a message saying permission denied. Only the
dedicate super user “root” is not protected from
careless calling programs or overwriting files, it gets
access to everything overriding all access rights set.
Oracle's SQLPlus interactive database access language
allows you to execute any syntactically valid SQL
statement and displays an appropriate error message if
illegal access is attempted.
Most word processors and text editors including
Microsoft Word and vi let the user try to save over a
read-only file. The program displays an error message
after the save has been attempted and has failed.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 7070

Limited Access

Also known as:

� Limited View

� Blinders

� Child Proofing

Limited Access guides a developer to just
presenting the currently available
functions to a user and hiding anything
that they lacks permission to perform.

Invisible Road Blocks

Hiding the cookie jars

Early Authorization

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 7171

Limited Access (context)
Graphical applications often provide many ways to
view data.

Users can dynamically choose which view on which
data they want.

When an application has multiple views, the
developer needs to be concerned with which
operations are legal given the current state of the
application and the privileges of the user.

The conditional code for determining whether an
operation is legal can be very complicated and
difficult to test. By limiting the view to what the user
has access to, conditional code can be eliminated.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 7272

Limited Access
Problem:

Users should not be allowed to perform illegal operations.
Forces:

� Users may be confused when some options are either not
present or disabled.

� Users should not be able to see operations they cannot do.
� Users should not view data they do not have permissions for.
� Users do not like being told what they cannot do.
� Users get annoyed with permission denied messages and illegal

operation errors.
� User validation can be easier when you limit the user to see only

what they can access.
� If options pop in and out depending upon Roles, the user may

get confused on what is available.

Solution:
Only let the users see what they have access to; only give
them selections and menus to options that their current
access-privileges permit.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 19

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 7373

Limited Access

You are designing the (user-) interface
of a system where access restrictions
such as user authorization to parts of
the interface apply.

While most applications of this pattern
are within the domain of graphical user
interfaces (GUI), it can also apply to
other interface types as well.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 7474

Limited Access: CRC

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 7575

Limited Access: Structure

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 7676

Limited Access: Scenario

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 20

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 7777

Limited Access:
Implementation Issues

A Limited View configures which selection
choices are possible for the user based upon the
current set of roles. This ensures that the user
only selects data they are allowed to see.

A Limited View takes the current Session with
the user’s Roles, applies the current state of the
application, and dynamically builds a GUI that
limits the view based upon these attributes.

Null Objects [Woolf 97] can be used for values
the user does not have permission to view.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 7878

Limited Access:
More Implementation Issues

When a user starts the system a mechanism
authenticates her and associates a Security
Session, typically within a Checkpoint
architecture.
The Security Session object caches the current
privileges of the user that can be used by the
GUI implementation to decide what functions
and data are permissible and should be
presented to the user.
The interface of the system checks the access
rights before presenting itself to the user. Only
that functionality that is available to the user is
rendered…hiding menus, buttons, etc.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 7979

Limited Access:
Positive Consequences

By only allowing the user to see and edit
what he or she can access, the developer
doesn’t have to worry about verifying each
operation after a user selects it.
Security checks can be simplified by
performing all of them up front.
Users will not get frustrated with error
dialogs popping up all the time telling
them what they can not do. Users will
also not get frustrated by constantly
seeing options they do not have access to.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 8080

Limited Access:
Negative Consequences

Users can become frustrated when options appear and
disappear on the screen. For example, if when viewing
one set of data, the editing button is there and when
viewing another set of data, it disappears, the user may
wonder if something is wrong with the application or
why the data isn’t available.
Training materials for an application must be customized
for each set of users because menu operations will
disappear and reappear and GUIs will change based on
the Limited View.
Retrofitting a Limited View into an existing system can
be difficult because the data for the Limited View, as
well as the code for selecting it, could be spread
throughout the system.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 21

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 8181

Limited Access:
Related Patterns

Full View With Errors is a competitor to this
pattern. If limiting the view completely is not
possible, error messages can fill in the holes.

A Session may have a Limited View of data
that it distributes throughout the application.

Roles are sometimes used to configure a
Limited View.

State or Strategy can be used to implement a
Limited View.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 8282

Limited Access:
More Related Patterns

Composites and Builders can be used to create
GUIs for a Limited View.
Null Objects can be used in places where a
view has been limited.
Metadata and Adaptive Object-Models can be
used to configure what parts of a view need to
be limited.
Checks [Cunningham 95] describes many
details on implementing GUI’s and where to
put the error notifications.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 8383

Limited Access:
Known Uses

Firewalls provide Limited Views on data by filtering
network data and filtering services available.
Web servers provide a Limited View by only allowing
users to view directories in the root web directory and
in users’ public_html directories.
Most operating systems provide hidden files and
directories, which are forms of Limited Views.
Microsoft’s Windows NT provides Limited Views based
upon a user’s role. Users only see files that they have
permission to see, and they get customized menus
based upon those roles.
The PLoP ’98 registration program provides Limited
Views for the administrator and for those registering
for PLoP. People registering for PLoP get a Limited
View to view and edit only their information.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 8484

Full Access vs. Limited View

Limited View can simplify security checks by performing them at
login and by dynamically building the appropriate views.
Application logic will have a simpler design because it does not
have to handle security exceptions throughout the code.

Limited View can be more user friendly since users do not get
barraged with error dialogs. However, the application code that
presents views and options to the users becomes more difficult
to implement, as the system must dynamically build these views
based upon the privileges of the user.

Full View With Errors is easier to implement. It is as simple as
performing a security check when an operation is executed and
opening an error dialog or printing to standard error when a
violation occurs. It also can be used when a security check
cannot be performed up front because it is time-consuming or
all necessary information is not yet known.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 22

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 8585

Full Access vs. Limited View

Full Access is best for when an application has a small number
of security checks to perform on user operations,

Full View With Errors is also better when most options are the
same independent of the user’s roles.

If security exception handling is spread throughout the
application and there are many variations of security privileges
depending upon the users Role, Limited View should be used.

Limited View and Full View With Errors are competing patterns
for individual security checks, they can both be used by an
application to provide a “Limited View With Minimal Errors.”

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 8686

Secure Access Layer

Also known as:

� Using Low-level security

� Using Non-application security

� Only as strong as the weakest link

Limited Access guides a developer to just
presenting the currently available
functions to a user and hiding anything
that they lacks permission to perform.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 8787

Secure Access Layer (context)
Most applications tend to be integrated with
many other systems.
The places where system integration occurs
can be the weakest security points and the
most susceptible to break-ins.
If the developer is forced to put checks into
the application wherever communication with
other systems happens, then the code could
become very convoluted.
An application that is built on an insecure
foundation will be insecure. In other words,
it doesn’t do any good to lock your door
when you leave the key on the front porch.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 8888

Secure Access Layer
Problem:

An application will be insecure if it is not properly integrated with the
security of the external systems it uses.

Forces:
� Application development should not have to be developed with operating

system, networking, and database specifics in mind. These can change
over the life of an application.

� Putting low-level security code throughout the whole application makes it
difficult to debug, modify, and port to other systems.

� Even if the application is secure, a good hacker could find a way to
intercept messages or go under the hood to access sensitive data.

� Interfacing with external security systems is sometimes difficult.
� An external system may not have sufficient security, and implementing

the needed security may not be possible or feasible.

Solution:
Build your application security around existing operating system,
networking, and database security mechanisms. If they do not
exist, then build your own lower-level security mechanism. On top
of the lower-level security, build a secure access layer for
communicating in and out of the program.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 23

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 8989

Secure Access Layer
The important point to this pattern is to build a layer
to isolate the developer from change. This layer may
have many different protocols depending upon the
types of communications that need to be done.
This layer will have a protocol for accessing secure
data in other systems and will send the required
information needed by the external systems.
The crux of this pattern is to separate external
protocols so they can be more easily secured.
The architecture for different Secure Access Layers
could vary greatly.

“Building on top of SSL is an example”

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 9090

Secure Access Layer:
Implementation Issues

Create a Secure Access Layer with a standard
set of protocols for communicating with the
outside world.
Communication in and out of the application will
pass through the protocols provided by this
layer.
This pattern assumes a convenient abstraction is
possible.
Secure Access Layer provides a location for a
more general abstraction.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 9191

Secure Access Layer:
Positive Consequences

A Secure Access Layer can help isolate where an
application communicates with external security
systems. Isolating secure access points makes it
easier to integrate new security components and
upgrade existing ones.

A Secure Access Layer can make an application
more portable. If the application later needs to
communicate with Sybase rather than Oracle,
then the access to the database is localized and
only needs to be changed in one place.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 9292

Secure Access Layer:
Negative Consequences

Different systems that your application may
need to integrate with use different security
protocols and schemes for accessing them. This
can make it difficult to develop a Secure Access
Layer that works for all integrated systems, and
it also may cause the developer to keep track of
information that many systems do not need.

It can be very hard to retrofit a Secure Access
Layer into an application which already has
security access code spread throughout.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 24

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 9393

Secure Access Layer:
Related Patterns

Secure Access Layer is part of a layered architecture.
Layers [BMRSS 96] discusses the details of building
layered architectures.

Layered Architecture for Information Systems [Fowlers
97-1] discusses implementation details that can be
applied when developing layered systems.

Check Point in conjunction with Roles can be used in
the Secure Access Layer to ensure only authorized
access.

Session information might be used to pass global
information to a Secure Access Layer.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 9494

Secure Access Layer:
Known Uses

Secure Shell [SSH] includes secure protocols for
communicating in X11 sessions and can use RSA
encryption through TCP/IP connections.
Netscape Server’s Secure Socket Layer (SSL) provides
a Secure Access Layer that web clients can use for
insuring secure communication.
Oracle provides its own Secure Access Layer that
applications can use for communicating with it.
CORBA Security Services [OMG] specifies how to
authenticate, administer, audit, and maintain security
throughout a CORBA distributed object system. Any
CORBA application’s Secure Access Layer would
communicate with CORBA’s Security Service.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 9595

Secure Access Layer:
More Known Uses

The Caterpillar/NCSA Financial Model Framework
[Yoder] uses a Secure Access Layer provided by the
LensSession in VisualWorks Smalltalk.
The PLoP ’98 registration program [Yoder & Manolescu
98] goes through a Secure Layer for access to the
system.
The Access API used by the Reuters SSL Developers Kit
– Java Edition uses a DACSPrincipal object to interact
with the Data Access Control System (DACS), an
entitlements system for controlling access to Reuters’
market data.

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 9696

Problems with Retrofitting

Secure Access Layer, Session, and Limited View, can
be very difficult to retrofit into a system that was
developed without security in mind.

If a Single Access Point is created up front, it is fairly
straightforward to add Check Point later.

Since Roles are used to define a Session and are set
up during Check Point, additional Roles can easily be
added later.

A dummy Check Point can start out as just a
placeholder and the details of the corporate security
policy can be added later. Also, if all outside
requests are forwarded through some form of a
Secure Access Layer, it will be easy to enhance and
abstract the Secure Access Layer at a later point.

Joseph W. Yoder

Architectural Patterns for
Enabling Application Security Page - 25

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 9797

Pattern Interaction Diagram

Check Point

Secure Access Layer

Single Point Access

Session

Role

Limited View

has

interacts with
creates

might use

used to create

uses

creates

Full View With Errors
defines

defines

uses

uses

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 9898

Class Collaboration Diagram
 aCheckPt Role Class Session Class

validate (user)
and initialize Check

OK

newSession: (aRole)

aSessionWithaLimitedView

aRole

aSessionWithaRole

Limited View Class

startAGUI: (aSessionWithRole&LimitedView)

GetValuesAnd
CreateLV: (…)

Create Role

initLimitedView

aLimitedView

GUI’s

startAGUI: (…)

aSinglePtAccess

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 9999

Where to Find More
Information

http://www.joeyoder.com/papers/patterns

http://hillside.net

http://www.refactory.com

http://www.joeyoder.com

http://securitypatterns.org

Architectural Patterns for Enabling Application Security –August 2004, Brazil. Copyright 2001-20043, Joseph W. Yoder & The Refactory, Inc. 100100

That’s All

